praeclarumjj3
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,103 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
-
## Model
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
base_model:
|
7 |
+
- meta-llama/Meta-Llama-3-8B-Instruct
|
8 |
+
pipeline_tag: image-text-to-text
|
9 |
---
|
10 |
|
11 |
+
# OLA-VLM-CLIP-ViT-Llama3-8b Model Card
|
12 |
|
13 |
+
OLA-VLM distills target visual information into the intermediate representations of the LLM from a set of target encoders. It adopts a predictive embedding optimization approach at selected LLM layers during training to minimize the embedding losses along with the next token prediction (NTP) objective, resulting in a vision-centric approach to training the Multimodal Large Language Model.
|
14 |
|
15 |
+
- **Repository:** [https://github.com/SHI-Labs/OLA-VLM](https://github.com/SHI-Labs/OLA-VLM)
|
16 |
+
- **Paper:** [https://arxiv.org/abs/](https://arxiv.org/abs/)
|
17 |
+
- **Project Page:** [https://praeclarumjj3.github.io/ola_vlm/](https://praeclarumjj3.github.io/ola_vlm/)
|
18 |
|
19 |
+
<p align="center">
|
20 |
+
<img src="https://praeclarumjj3.github.io/ola_vlm/teaser.png" width="50%" class="center"/>
|
21 |
+
</p>
|
22 |
|
23 |
+
## Get Started with the Model
|
24 |
|
25 |
+
Clone the repository and follow the [setup instructions](https://github.com/SHI-Labs/OLA-VLM#installation-instructions):
|
26 |
|
27 |
+
```bash
|
28 |
+
git lfs install
|
29 |
+
git clone https://github.com/SHI-Labs/OLA-VLM
|
30 |
+
cd OLA-VLM
|
31 |
+
```
|
32 |
|
33 |
+
After setup, you can use OLA-VLM with the following code:
|
34 |
|
35 |
+
```python
|
36 |
+
import gradio as gr
|
37 |
+
import os
|
38 |
+
import torch
|
39 |
+
import numpy as np
|
|
|
|
|
40 |
|
41 |
+
from ola_vlm.constants import DEFAULT_IMAGE_TOKEN
|
42 |
|
43 |
+
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
44 |
+
from ola_vlm.conversation import conv_templates, SeparatorStyle
|
45 |
+
from ola_vlm.model.builder import load_pretrained_model
|
46 |
+
from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
|
47 |
|
48 |
+
model_path = "shi-labs/OLA-VLM-CLIP-ViT-Llama3-8b"
|
49 |
+
conv_mode = "llava_llama_3"
|
50 |
+
image_path = "/path/to/OLA-VLM/assets/pb.jpg"
|
51 |
+
input_prompt = "Describe this image."
|
52 |
|
53 |
+
# load model
|
54 |
+
model_name = get_model_name_from_path(model_path)
|
55 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
|
56 |
|
57 |
+
# prepare prompt
|
58 |
+
input_prompt = DEFAULT_IMAGE_TOKEN + '\n' + input_prompt
|
59 |
|
60 |
+
conv = conv_templates[conv_mode].copy()
|
61 |
+
conv.append_message(conv.roles[0], input_prompt)
|
62 |
+
conv.append_message(conv.roles[1], None)
|
63 |
+
prompt = conv.get_prompt()
|
64 |
|
65 |
+
# load and preprocess image
|
66 |
+
image = Image.open(image_path).convert('RGB')
|
67 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
68 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
|
69 |
|
70 |
+
input_ids = input_ids.to(device='cuda', non_blocking=True)
|
71 |
+
image_tensor = image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True)
|
72 |
|
73 |
+
# run inference
|
74 |
+
with torch.inference_mode():
|
75 |
+
output_ids = model.generate(
|
76 |
+
input_ids.unsqueeze(0),
|
77 |
+
images=image_tensor.unsqueeze(0),
|
78 |
+
image_sizes=[image.size],
|
79 |
+
do_sample=True,
|
80 |
+
temperature=0.2,
|
81 |
+
top_p=0.5,
|
82 |
+
num_beams=1,
|
83 |
+
max_new_tokens=256,
|
84 |
+
use_cache=True)
|
85 |
|
86 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
87 |
+
print(f"Image:{image_path} \nPrompt:{input_prompt} \nOutput:{outputs}")
|
88 |
+
```
|
89 |
|
90 |
+
For more information, please refer to [https://github.com/SHI-Labs/OLA-VLM](https://github.com/SHI-Labs/OLA-VLM).
|
91 |
|
92 |
+
## Citation
|
93 |
|
94 |
+
If you found our work useful in your research, please consider starring ⭐ us on GitHub and citing 📚 us in your research!
|
95 |
|
96 |
+
```
|
97 |
+
@article{jain2024ola_vlm,
|
98 |
+
title={{OLA-VLM: Optimizing Language Model Representations for Enhanced Visual Quality and Alignment}},
|
99 |
+
author={Jitesh Jain and Zhengyuan Yang and Humphrey Shi and Jianfeng Gao and Jianwei Yang},
|
100 |
+
journal={arXiv},
|
101 |
+
year={2024}
|
102 |
+
}
|
103 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|