praeclarumjj3 commited on
Commit
2aeca6b
1 Parent(s): 091ce63

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -173
README.md CHANGED
@@ -1,199 +1,102 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ base_model:
7
+ - meta-llama/Meta-Llama-3-8B-Instruct
8
+ pipeline_tag: image-text-to-text
9
  ---
10
 
11
+ # OLA-VLM-CLIP-ConvNeXT-Llama3-8b Model Card
12
 
13
+ OLA-VLM distills target visual information into the intermediate representations of the LLM from a set of target encoders. It adopts a predictive embedding optimization approach at selected LLM layers during training to minimize the embedding losses along with the next token prediction (NTP) objective, resulting in a vision-centric approach to training the Multimodal Large Language Model.
14
 
15
+ - **GitHub Repo:** [https://github.com/SHI-Labs/OLA-VLM](https://github.com/SHI-Labs/OLA-VLM)
16
+ - **Project Page:** [https://praeclarumjj3.github.io/ola_vlm/](https://praeclarumjj3.github.io/ola_vlm/)
17
 
18
+ <p align="center">
19
+ <img src="https://praeclarumjj3.github.io/ola_vlm/teaser.png" width="90%" class="center"/>
20
+ </p>
21
 
22
+ ## Get Started with the Model
23
 
24
+ Clone the repository and follow the [setup instructions](https://github.com/SHI-Labs/OLA-VLM#installation-instructions):
25
 
26
+ ```bash
27
+ git lfs install
28
+ git clone https://github.com/SHI-Labs/OLA-VLM
29
+ cd OLA-VLM
30
+ ```
31
 
32
+ After setup, you can use OLA-VLM with the following code:
33
 
34
+ ```python
35
+ import gradio as gr
36
+ import os
37
+ import torch
38
+ import numpy as np
 
 
39
 
40
+ from ola_vlm.constants import DEFAULT_IMAGE_TOKEN
41
 
42
+ from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
43
+ from ola_vlm.conversation import conv_templates, SeparatorStyle
44
+ from ola_vlm.model.builder import load_pretrained_model
45
+ from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
46
 
47
+ model_path = "shi-labs/OLA-VLM-CLIP-ConvNeXT-Llama3-8b"
48
+ conv_mode = "llava_llama_3"
49
+ image_path = "/path/to/OLA-VLM/assets/pb.jpg"
50
+ input_prompt = "Describe this image."
51
 
52
+ # load model
53
+ model_name = get_model_name_from_path(model_path)
54
+ tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
55
 
56
+ # prepare prompt
57
+ input_prompt = DEFAULT_IMAGE_TOKEN + '\n' + input_prompt
58
 
59
+ conv = conv_templates[conv_mode].copy()
60
+ conv.append_message(conv.roles[0], input_prompt)
61
+ conv.append_message(conv.roles[1], None)
62
+ prompt = conv.get_prompt()
63
 
64
+ # load and preprocess image
65
+ image = Image.open(image_path).convert('RGB')
66
+ image_tensor = process_images([image], image_processor, model.config)[0]
67
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
68
 
69
+ input_ids = input_ids.to(device='cuda', non_blocking=True)
70
+ image_tensor = image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True)
71
 
72
+ # run inference
73
+ with torch.inference_mode():
74
+ output_ids = model.generate(
75
+ input_ids.unsqueeze(0),
76
+ images=image_tensor.unsqueeze(0),
77
+ image_sizes=[image.size],
78
+ do_sample=True,
79
+ temperature=0.2,
80
+ top_p=0.5,
81
+ num_beams=1,
82
+ max_new_tokens=256,
83
+ use_cache=True)
84
 
85
+ outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
86
+ print(f"Image:{image_path} \nPrompt:{input_prompt} \nOutput:{outputs}")
87
+ ```
88
 
89
+ For more information, please refer to [https://github.com/SHI-Labs/OLA-VLM](https://github.com/SHI-Labs/OLA-VLM).
90
 
91
+ ## Citation
92
 
93
+ If you found our work useful in your research, please consider starring us on [GitHub](https://github.com/SHI-Labs/OLA-VLM) and citing 📚 us in your research!
94
 
95
+ ```
96
+ @article{jain2024ola_vlm,
97
+ title={{OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation}},
98
+ author={Jitesh Jain and Zhengyuan Yang and Humphrey Shi and Jianfeng Gao and Jianwei Yang},
99
+ journal={arXiv},
100
+ year={2024}
101
+ }
102
+ ```