shermansiu commited on
Commit
4289a34
1 Parent(s): eb11390

Upload LunarLander-v2 PPO agent to the Huggingface Hub

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.85 +/- 24.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1fede54550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1fede545e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1fede54670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1fede54700>", "_build": "<function ActorCriticPolicy._build at 0x7f1fede54790>", "forward": "<function ActorCriticPolicy.forward at 0x7f1fede54820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1fede548b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1fede54940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1fede549d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1fede54a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1fede54af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1fede54b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1fede5a400>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679786658144859151, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM6sL08t3I+0PKRPfBod75QpzM8ItUTvgAAAAAAAAAA2pvEPRqPUj70mRq+Nv2YvtYly70UjrO8AAAAAAAAAACAd8O9FPySunqKqD0A1S+z2upCOu5oY7MAAIA/AAAAAM1BhD1Du+4+C/3vvd3Mu74NGIS9mwYcvQAAAAAAAAAAenA8PscaZD8702I+T6rivt99iT4lC6m4AAAAAAAAAABGTgm+T69yPQB85TzFPWW+uIgGvpAnEL0AAAAAAAAAANMCgz5vajE/7haevQfzyL5wr4Q+pYl5vgAAAAAAAAAATWrGPgwbgz+LQRM+W237vnbiAj8vnJC9AAAAAAAAAABmbIu9CElGP2YgyjuNjLm+qEZdvL/uPj0AAAAAAAAAABouST0gkqU/slunPeJ9BL9YyeE93HfDvQAAAAAAAAAAGhSWPbJ1VT/9qUe8UsrzviVeST4yE729AAAAAAAAAAAtXiU+digrvLoGnTv3Ldu51ZeOvV4+tboAAIA/AACAP9rQkz2u+426nZLltJF1N6/o4hG7lu08NAAAgD8AAIA/mjAfvbgvtrsne5e7MkeOPMttGj0LUHG9AACAPwAAgD9zgg0+L6OoPjCk3r1ZU3y+m0E7PAtst70AAAAAAAAAABrwpb0PnSy8O8vQPMYiEz0klZy8tQ7tOwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm+jzUUYIb0CUhpRSlIwBbJRNJAGMAXSUR0CU02LEk0JodX2UKGgGaAloD0MIQiPYuP5lcECUhpRSlGgVTbcBaBZHQJTUCxrzoU11fZQoaAZoCWgPQwhnKsQjMTVwQJSGlFKUaBVNCwFoFkdAlNRLaRISUXV9lChoBmgJaA9DCHIycasgT2xAlIaUUpRoFU3aAmgWR0CU1mhV2icodX2UKGgGaAloD0MIIjMXuHydcUCUhpRSlGgVS/JoFkdAlNalDrqt5nV9lChoBmgJaA9DCPJEEOdh1XBAlIaUUpRoFU00AWgWR0CU1qrj5sTGdX2UKGgGaAloD0MIls0cktp9bUCUhpRSlGgVTRwBaBZHQJTYexTsIE91fZQoaAZoCWgPQwhXJZF90BlwQJSGlFKUaBVNDQFoFkdAlNjAQg9vCXV9lChoBmgJaA9DCBcP7zmwClBAlIaUUpRoFUuxaBZHQJTY0IdELIB1fZQoaAZoCWgPQwh+c3/1OGpwQJSGlFKUaBVNMAFoFkdAlNkRm9QGfXV9lChoBmgJaA9DCK+zIf+Mc3FAlIaUUpRoFU1eAWgWR0CU2h3FkxyodX2UKGgGaAloD0MI/BwfLQ7AckCUhpRSlGgVTSMBaBZHQJTaH3wkPc11fZQoaAZoCWgPQwik5NU5xtJwQJSGlFKUaBVNBQFoFkdAlNsqtT1kD3V9lChoBmgJaA9DCLDna5bLnE1AlIaUUpRoFUvhaBZHQJTbdrhzeXR1fZQoaAZoCWgPQwjHm/wWHcpwQJSGlFKUaBVNDAFoFkdAlNx+QZGayHV9lChoBmgJaA9DCBvYKsHiuE9AlIaUUpRoFUuZaBZHQJTdXytmthd1fZQoaAZoCWgPQwhgIt46f/1xQJSGlFKUaBVL9GgWR0CU3ftTDO1OdX2UKGgGaAloD0MIJm+Ame9SSkCUhpRSlGgVS+9oFkdAlN4NAC4jKXV9lChoBmgJaA9DCIveqYA7YXBAlIaUUpRoFU1jAWgWR0CU3odZaFEidX2UKGgGaAloD0MIbVm+LsOkcUCUhpRSlGgVTSMBaBZHQJTfhgE2YOV1fZQoaAZoCWgPQwiYvtcQHKVbQJSGlFKUaBVN6ANoFkdAlOCJkbxVhnV9lChoBmgJaA9DCC8012mkPGFAlIaUUpRoFU3oA2gWR0CU4M/eLvTgdX2UKGgGaAloD0MI+x9grZq+cECUhpRSlGgVS/hoFkdAlOFdjXnQpnV9lChoBmgJaA9DCLdhFATPOHJAlIaUUpRoFU0yAWgWR0CU4cWuX/o8dX2UKGgGaAloD0MInuxmRn+eckCUhpRSlGgVTTwBaBZHQJTh1A7gbZR1fZQoaAZoCWgPQwg826M33LVwQJSGlFKUaBVNOQFoFkdAlOIvrv9cbHV9lChoBmgJaA9DCAGnd/G+dnFAlIaUUpRoFU0XAWgWR0CU4x3c580DdX2UKGgGaAloD0MIzXUaaSnzb0CUhpRSlGgVTRABaBZHQJTjL+kxh2J1fZQoaAZoCWgPQwjdRZiinJlwQJSGlFKUaBVL8WgWR0CU40mQr+YMdX2UKGgGaAloD0MIe6NWmH4Nc0CUhpRSlGgVS+VoFkdAlOOwEIPbwnV9lChoBmgJaA9DCDW1bK2vUmBAlIaUUpRoFU3oA2gWR0CU48dvbXYldX2UKGgGaAloD0MIzlFHx1VpckCUhpRSlGgVTYsBaBZHQJTk+SzPa+N1fZQoaAZoCWgPQwjde7jkOMlxQJSGlFKUaBVNEAFoFkdAlOU63/givHV9lChoBmgJaA9DCK+WOzPBm3FAlIaUUpRoFU0JAWgWR0CU5XFTefqYdX2UKGgGaAloD0MIuVD51/IkcUCUhpRSlGgVTRwBaBZHQJTldm9QGfR1fZQoaAZoCWgPQwgB+KdUCV5uQJSGlFKUaBVNAQFoFkdAlObkyYXwb3V9lChoBmgJaA9DCKIm+nxULnJAlIaUUpRoFUviaBZHQJTnOJzkp7V1fZQoaAZoCWgPQwjwUBToE4RvQJSGlFKUaBVNBwFoFkdAlOdPl6qsEXV9lChoBmgJaA9DCAOUhhpFsHBAlIaUUpRoFU0IAWgWR0CU6FFKCg9NdX2UKGgGaAloD0MIRiI0gg0wckCUhpRSlGgVS/xoFkdAlOhj/VAiV3V9lChoBmgJaA9DCDUIc7uXgnBAlIaUUpRoFU0tAWgWR0CU6OfLcKw7dX2UKGgGaAloD0MIdeRIZyBUc0CUhpRSlGgVS/RoFkdAlOlZ4bCJoHV9lChoBmgJaA9DCOIeSx+6jmxAlIaUUpRoFUv+aBZHQJTpcRDkU9J1fZQoaAZoCWgPQwjCpPj4BA9xQJSGlFKUaBVL+WgWR0CU6fKJVKf4dX2UKGgGaAloD0MI9MDHYAVQckCUhpRSlGgVTScBaBZHQJTqnHLidat1fZQoaAZoCWgPQwg4u7VMhqNwQJSGlFKUaBVNFAFoFkdAlOykcCHRC3V9lChoBmgJaA9DCHb+7bLfj25AlIaUUpRoFU0sAWgWR0CU7dizLOiWdX2UKGgGaAloD0MIc9pTck7AQkCUhpRSlGgVS9RoFkdAlQWUoKD02HV9lChoBmgJaA9DCMqkhjZA7XBAlIaUUpRoFU0NAWgWR0CVBcJ9AooedX2UKGgGaAloD0MIpdsSuSAxckCUhpRSlGgVTREBaBZHQJUGU0Nz8xd1fZQoaAZoCWgPQwjXh/VGbcRxQJSGlFKUaBVNEAFoFkdAlQfXt8eCCnV9lChoBmgJaA9DCIodjUO9vnBAlIaUUpRoFU04AWgWR0CVB+KYAsCldX2UKGgGaAloD0MIqHFvfgO/cUCUhpRSlGgVTaYBaBZHQJUIV+AmReV1fZQoaAZoCWgPQwj4qL9eoSdxQJSGlFKUaBVNFAFoFkdAlQic495hSnV9lChoBmgJaA9DCCxJnuv70W9AlIaUUpRoFU0EAWgWR0CVCMFjd56ddX2UKGgGaAloD0MIAvOQKR/IcECUhpRSlGgVTRIBaBZHQJUJFcyFfzB1fZQoaAZoCWgPQwh/EwoRsChyQJSGlFKUaBVNCAFoFkdAlQo1BlcyFnV9lChoBmgJaA9DCIF38unxO3JAlIaUUpRoFU0uAWgWR0CVCqMYuTRqdX2UKGgGaAloD0MI0GBT51HYbkCUhpRSlGgVTRgBaBZHQJUM+YZ2pyZ1fZQoaAZoCWgPQwjAIOnTqlpvQJSGlFKUaBVNEQFoFkdAlQ3srVe8f3V9lChoBmgJaA9DCDXUKCTZX3BAlIaUUpRoFUv3aBZHQJUOJrsSkCV1fZQoaAZoCWgPQwi8k0+P7WBwQJSGlFKUaBVNEQFoFkdAlQ7yrgflqHV9lChoBmgJaA9DCEGADB17dHNAlIaUUpRoFUvgaBZHQJUP+EsasIV1fZQoaAZoCWgPQwjT2cng6FRwQJSGlFKUaBVL7WgWR0CVELr0rbxmdX2UKGgGaAloD0MIsOWV6y1bcUCUhpRSlGgVTS8BaBZHQJUQ0BxPwd91fZQoaAZoCWgPQwhMN4lBYOFuQJSGlFKUaBVNBgFoFkdAlRDfldTo+3V9lChoBmgJaA9DCO85sByhzW5AlIaUUpRoFU0WAWgWR0CVEkfWcz68dX2UKGgGaAloD0MINbdCWM2DcECUhpRSlGgVTTsBaBZHQJUSo5ggHNZ1fZQoaAZoCWgPQwj1ZWmnJuFyQJSGlFKUaBVNBwFoFkdAlRNLiADq4nV9lChoBmgJaA9DCKME/YXeDHFAlIaUUpRoFU0tAWgWR0CVE1SNOuaGdX2UKGgGaAloD0MIMA+Z8mEecUCUhpRSlGgVTRABaBZHQJUT9efI0ZZ1fZQoaAZoCWgPQwht5SX/k6JbQJSGlFKUaBVN6ANoFkdAlRSNat9x63V9lChoBmgJaA9DCP9byY4NFnJAlIaUUpRoFU0IAWgWR0CVFYxfv4M4dX2UKGgGaAloD0MIRiQKLauSckCUhpRSlGgVTRMBaBZHQJUWsuoP07N1fZQoaAZoCWgPQwidgCbChg9xQJSGlFKUaBVL8mgWR0CVFyNIK+i8dX2UKGgGaAloD0MIVMTpJJtGcUCUhpRSlGgVTUIBaBZHQJUX4Y3vQWx1fZQoaAZoCWgPQwh6UiY1dH1yQJSGlFKUaBVNBAFoFkdAlRhgxSHdoHV9lChoBmgJaA9DCK34hsKndnBAlIaUUpRoFU1KAWgWR0CVGOb1RLsbdX2UKGgGaAloD0MI34lZLwa+YECUhpRSlGgVTegDaBZHQJUY7blA/s51fZQoaAZoCWgPQwiz8PW17hpwQJSGlFKUaBVL9WgWR0CVGSoXbdrPdX2UKGgGaAloD0MIU7KchFJFb0CUhpRSlGgVTSMBaBZHQJUZPfyf+S91fZQoaAZoCWgPQwicwHRaNyZvQJSGlFKUaBVL+WgWR0CVGiBz3h4udX2UKGgGaAloD0MIbCbfbHMvckCUhpRSlGgVS+poFkdAlRpQQHzH0nV9lChoBmgJaA9DCATI0LED8GNAlIaUUpRoFU3oA2gWR0CVGrwUxmCidX2UKGgGaAloD0MIndoZpvaMcECUhpRSlGgVTRoBaBZHQJUa7QUpNK11fZQoaAZoCWgPQwiloNtLmnVwQJSGlFKUaBVNPAFoFkdAlRsyMUAT7HV9lChoBmgJaA9DCAxXB0Dc93BAlIaUUpRoFU1DAWgWR0CVHQM9bHIZdX2UKGgGaAloD0MIU5J1OLoCb0CUhpRSlGgVTQMBaBZHQJUdg4Otnwp1fZQoaAZoCWgPQwgrTrUW5tZxQJSGlFKUaBVNCAFoFkdAlR4MvIwM6XV9lChoBmgJaA9DCBnG3SBa23BAlIaUUpRoFU0AAWgWR0CVHobrC3w1dX2UKGgGaAloD0MIyyxCsVWAc0CUhpRSlGgVTWgBaBZHQJUfDmyPdVN1fZQoaAZoCWgPQwhEFf4ML8pxQJSGlFKUaBVL82gWR0CVH1vTPSlWdX2UKGgGaAloD0MIM25qoPkrcECUhpRSlGgVTTUBaBZHQJUgizAvcrR1fZQoaAZoCWgPQwi2EOSghFJtQJSGlFKUaBVNNgFoFkdAlSEXS4OMEXV9lChoBmgJaA9DCIbkZOLWM2xAlIaUUpRoFU0rAWgWR0CVIjclPacqdX2UKGgGaAloD0MIcR5OYDpocUCUhpRSlGgVTRMBaBZHQJUiOA/cFhZ1fZQoaAZoCWgPQwiQoWMHVYtyQJSGlFKUaBVNKQFoFkdAlSJdTcZccHV9lChoBmgJaA9DCPLs8q0PXm5AlIaUUpRoFU0bAWgWR0CVIqcDr7fpdX2UKGgGaAloD0MITQ8KSlGJb0CUhpRSlGgVTWIBaBZHQJUiw0O3DvV1fZQoaAZoCWgPQwgPRBZpomZyQJSGlFKUaBVNFgFoFkdAlSLSih37lHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 296, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae5773206b98fc349af1e28316852a478cd40462731a4535cd9f101131450484
3
+ size 147401
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1fede54550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1fede545e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1fede54670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1fede54700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1fede54790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1fede54820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1fede548b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1fede54940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1fede549d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1fede54a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1fede54af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1fede54b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f1fede5a400>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1212416,
47
+ "_total_timesteps": 1200000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679786658144859151,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM6sL08t3I+0PKRPfBod75QpzM8ItUTvgAAAAAAAAAA2pvEPRqPUj70mRq+Nv2YvtYly70UjrO8AAAAAAAAAACAd8O9FPySunqKqD0A1S+z2upCOu5oY7MAAIA/AAAAAM1BhD1Du+4+C/3vvd3Mu74NGIS9mwYcvQAAAAAAAAAAenA8PscaZD8702I+T6rivt99iT4lC6m4AAAAAAAAAABGTgm+T69yPQB85TzFPWW+uIgGvpAnEL0AAAAAAAAAANMCgz5vajE/7haevQfzyL5wr4Q+pYl5vgAAAAAAAAAATWrGPgwbgz+LQRM+W237vnbiAj8vnJC9AAAAAAAAAABmbIu9CElGP2YgyjuNjLm+qEZdvL/uPj0AAAAAAAAAABouST0gkqU/slunPeJ9BL9YyeE93HfDvQAAAAAAAAAAGhSWPbJ1VT/9qUe8UsrzviVeST4yE729AAAAAAAAAAAtXiU+digrvLoGnTv3Ldu51ZeOvV4+tboAAIA/AACAP9rQkz2u+426nZLltJF1N6/o4hG7lu08NAAAgD8AAIA/mjAfvbgvtrsne5e7MkeOPMttGj0LUHG9AACAPwAAgD9zgg0+L6OoPjCk3r1ZU3y+m0E7PAtst70AAAAAAAAAABrwpb0PnSy8O8vQPMYiEz0klZy8tQ7tOwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.010346666666666726,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm+jzUUYIb0CUhpRSlIwBbJRNJAGMAXSUR0CU02LEk0JodX2UKGgGaAloD0MIQiPYuP5lcECUhpRSlGgVTbcBaBZHQJTUCxrzoU11fZQoaAZoCWgPQwhnKsQjMTVwQJSGlFKUaBVNCwFoFkdAlNRLaRISUXV9lChoBmgJaA9DCHIycasgT2xAlIaUUpRoFU3aAmgWR0CU1mhV2icodX2UKGgGaAloD0MIIjMXuHydcUCUhpRSlGgVS/JoFkdAlNalDrqt5nV9lChoBmgJaA9DCPJEEOdh1XBAlIaUUpRoFU00AWgWR0CU1qrj5sTGdX2UKGgGaAloD0MIls0cktp9bUCUhpRSlGgVTRwBaBZHQJTYexTsIE91fZQoaAZoCWgPQwhXJZF90BlwQJSGlFKUaBVNDQFoFkdAlNjAQg9vCXV9lChoBmgJaA9DCBcP7zmwClBAlIaUUpRoFUuxaBZHQJTY0IdELIB1fZQoaAZoCWgPQwh+c3/1OGpwQJSGlFKUaBVNMAFoFkdAlNkRm9QGfXV9lChoBmgJaA9DCK+zIf+Mc3FAlIaUUpRoFU1eAWgWR0CU2h3FkxyodX2UKGgGaAloD0MI/BwfLQ7AckCUhpRSlGgVTSMBaBZHQJTaH3wkPc11fZQoaAZoCWgPQwik5NU5xtJwQJSGlFKUaBVNBQFoFkdAlNsqtT1kD3V9lChoBmgJaA9DCLDna5bLnE1AlIaUUpRoFUvhaBZHQJTbdrhzeXR1fZQoaAZoCWgPQwjHm/wWHcpwQJSGlFKUaBVNDAFoFkdAlNx+QZGayHV9lChoBmgJaA9DCBvYKsHiuE9AlIaUUpRoFUuZaBZHQJTdXytmthd1fZQoaAZoCWgPQwhgIt46f/1xQJSGlFKUaBVL9GgWR0CU3ftTDO1OdX2UKGgGaAloD0MIJm+Ame9SSkCUhpRSlGgVS+9oFkdAlN4NAC4jKXV9lChoBmgJaA9DCIveqYA7YXBAlIaUUpRoFU1jAWgWR0CU3odZaFEidX2UKGgGaAloD0MIbVm+LsOkcUCUhpRSlGgVTSMBaBZHQJTfhgE2YOV1fZQoaAZoCWgPQwiYvtcQHKVbQJSGlFKUaBVN6ANoFkdAlOCJkbxVhnV9lChoBmgJaA9DCC8012mkPGFAlIaUUpRoFU3oA2gWR0CU4M/eLvTgdX2UKGgGaAloD0MI+x9grZq+cECUhpRSlGgVS/hoFkdAlOFdjXnQpnV9lChoBmgJaA9DCLdhFATPOHJAlIaUUpRoFU0yAWgWR0CU4cWuX/o8dX2UKGgGaAloD0MInuxmRn+eckCUhpRSlGgVTTwBaBZHQJTh1A7gbZR1fZQoaAZoCWgPQwg826M33LVwQJSGlFKUaBVNOQFoFkdAlOIvrv9cbHV9lChoBmgJaA9DCAGnd/G+dnFAlIaUUpRoFU0XAWgWR0CU4x3c580DdX2UKGgGaAloD0MIzXUaaSnzb0CUhpRSlGgVTRABaBZHQJTjL+kxh2J1fZQoaAZoCWgPQwjdRZiinJlwQJSGlFKUaBVL8WgWR0CU40mQr+YMdX2UKGgGaAloD0MIe6NWmH4Nc0CUhpRSlGgVS+VoFkdAlOOwEIPbwnV9lChoBmgJaA9DCDW1bK2vUmBAlIaUUpRoFU3oA2gWR0CU48dvbXYldX2UKGgGaAloD0MIzlFHx1VpckCUhpRSlGgVTYsBaBZHQJTk+SzPa+N1fZQoaAZoCWgPQwjde7jkOMlxQJSGlFKUaBVNEAFoFkdAlOU63/givHV9lChoBmgJaA9DCK+WOzPBm3FAlIaUUpRoFU0JAWgWR0CU5XFTefqYdX2UKGgGaAloD0MIuVD51/IkcUCUhpRSlGgVTRwBaBZHQJTldm9QGfR1fZQoaAZoCWgPQwgB+KdUCV5uQJSGlFKUaBVNAQFoFkdAlObkyYXwb3V9lChoBmgJaA9DCKIm+nxULnJAlIaUUpRoFUviaBZHQJTnOJzkp7V1fZQoaAZoCWgPQwjwUBToE4RvQJSGlFKUaBVNBwFoFkdAlOdPl6qsEXV9lChoBmgJaA9DCAOUhhpFsHBAlIaUUpRoFU0IAWgWR0CU6FFKCg9NdX2UKGgGaAloD0MIRiI0gg0wckCUhpRSlGgVS/xoFkdAlOhj/VAiV3V9lChoBmgJaA9DCDUIc7uXgnBAlIaUUpRoFU0tAWgWR0CU6OfLcKw7dX2UKGgGaAloD0MIdeRIZyBUc0CUhpRSlGgVS/RoFkdAlOlZ4bCJoHV9lChoBmgJaA9DCOIeSx+6jmxAlIaUUpRoFUv+aBZHQJTpcRDkU9J1fZQoaAZoCWgPQwjCpPj4BA9xQJSGlFKUaBVL+WgWR0CU6fKJVKf4dX2UKGgGaAloD0MI9MDHYAVQckCUhpRSlGgVTScBaBZHQJTqnHLidat1fZQoaAZoCWgPQwg4u7VMhqNwQJSGlFKUaBVNFAFoFkdAlOykcCHRC3V9lChoBmgJaA9DCHb+7bLfj25AlIaUUpRoFU0sAWgWR0CU7dizLOiWdX2UKGgGaAloD0MIc9pTck7AQkCUhpRSlGgVS9RoFkdAlQWUoKD02HV9lChoBmgJaA9DCMqkhjZA7XBAlIaUUpRoFU0NAWgWR0CVBcJ9AooedX2UKGgGaAloD0MIpdsSuSAxckCUhpRSlGgVTREBaBZHQJUGU0Nz8xd1fZQoaAZoCWgPQwjXh/VGbcRxQJSGlFKUaBVNEAFoFkdAlQfXt8eCCnV9lChoBmgJaA9DCIodjUO9vnBAlIaUUpRoFU04AWgWR0CVB+KYAsCldX2UKGgGaAloD0MIqHFvfgO/cUCUhpRSlGgVTaYBaBZHQJUIV+AmReV1fZQoaAZoCWgPQwj4qL9eoSdxQJSGlFKUaBVNFAFoFkdAlQic495hSnV9lChoBmgJaA9DCCxJnuv70W9AlIaUUpRoFU0EAWgWR0CVCMFjd56ddX2UKGgGaAloD0MIAvOQKR/IcECUhpRSlGgVTRIBaBZHQJUJFcyFfzB1fZQoaAZoCWgPQwh/EwoRsChyQJSGlFKUaBVNCAFoFkdAlQo1BlcyFnV9lChoBmgJaA9DCIF38unxO3JAlIaUUpRoFU0uAWgWR0CVCqMYuTRqdX2UKGgGaAloD0MI0GBT51HYbkCUhpRSlGgVTRgBaBZHQJUM+YZ2pyZ1fZQoaAZoCWgPQwjAIOnTqlpvQJSGlFKUaBVNEQFoFkdAlQ3srVe8f3V9lChoBmgJaA9DCDXUKCTZX3BAlIaUUpRoFUv3aBZHQJUOJrsSkCV1fZQoaAZoCWgPQwi8k0+P7WBwQJSGlFKUaBVNEQFoFkdAlQ7yrgflqHV9lChoBmgJaA9DCEGADB17dHNAlIaUUpRoFUvgaBZHQJUP+EsasIV1fZQoaAZoCWgPQwjT2cng6FRwQJSGlFKUaBVL7WgWR0CVELr0rbxmdX2UKGgGaAloD0MIsOWV6y1bcUCUhpRSlGgVTS8BaBZHQJUQ0BxPwd91fZQoaAZoCWgPQwhMN4lBYOFuQJSGlFKUaBVNBgFoFkdAlRDfldTo+3V9lChoBmgJaA9DCO85sByhzW5AlIaUUpRoFU0WAWgWR0CVEkfWcz68dX2UKGgGaAloD0MINbdCWM2DcECUhpRSlGgVTTsBaBZHQJUSo5ggHNZ1fZQoaAZoCWgPQwj1ZWmnJuFyQJSGlFKUaBVNBwFoFkdAlRNLiADq4nV9lChoBmgJaA9DCKME/YXeDHFAlIaUUpRoFU0tAWgWR0CVE1SNOuaGdX2UKGgGaAloD0MIMA+Z8mEecUCUhpRSlGgVTRABaBZHQJUT9efI0ZZ1fZQoaAZoCWgPQwht5SX/k6JbQJSGlFKUaBVN6ANoFkdAlRSNat9x63V9lChoBmgJaA9DCP9byY4NFnJAlIaUUpRoFU0IAWgWR0CVFYxfv4M4dX2UKGgGaAloD0MIRiQKLauSckCUhpRSlGgVTRMBaBZHQJUWsuoP07N1fZQoaAZoCWgPQwidgCbChg9xQJSGlFKUaBVL8mgWR0CVFyNIK+i8dX2UKGgGaAloD0MIVMTpJJtGcUCUhpRSlGgVTUIBaBZHQJUX4Y3vQWx1fZQoaAZoCWgPQwh6UiY1dH1yQJSGlFKUaBVNBAFoFkdAlRhgxSHdoHV9lChoBmgJaA9DCK34hsKndnBAlIaUUpRoFU1KAWgWR0CVGOb1RLsbdX2UKGgGaAloD0MI34lZLwa+YECUhpRSlGgVTegDaBZHQJUY7blA/s51fZQoaAZoCWgPQwiz8PW17hpwQJSGlFKUaBVL9WgWR0CVGSoXbdrPdX2UKGgGaAloD0MIU7KchFJFb0CUhpRSlGgVTSMBaBZHQJUZPfyf+S91fZQoaAZoCWgPQwicwHRaNyZvQJSGlFKUaBVL+WgWR0CVGiBz3h4udX2UKGgGaAloD0MIbCbfbHMvckCUhpRSlGgVS+poFkdAlRpQQHzH0nV9lChoBmgJaA9DCATI0LED8GNAlIaUUpRoFU3oA2gWR0CVGrwUxmCidX2UKGgGaAloD0MIndoZpvaMcECUhpRSlGgVTRoBaBZHQJUa7QUpNK11fZQoaAZoCWgPQwiloNtLmnVwQJSGlFKUaBVNPAFoFkdAlRsyMUAT7HV9lChoBmgJaA9DCAxXB0Dc93BAlIaUUpRoFU1DAWgWR0CVHQM9bHIZdX2UKGgGaAloD0MIU5J1OLoCb0CUhpRSlGgVTQMBaBZHQJUdg4Otnwp1fZQoaAZoCWgPQwgrTrUW5tZxQJSGlFKUaBVNCAFoFkdAlR4MvIwM6XV9lChoBmgJaA9DCBnG3SBa23BAlIaUUpRoFU0AAWgWR0CVHobrC3w1dX2UKGgGaAloD0MIyyxCsVWAc0CUhpRSlGgVTWgBaBZHQJUfDmyPdVN1fZQoaAZoCWgPQwhEFf4ML8pxQJSGlFKUaBVL82gWR0CVH1vTPSlWdX2UKGgGaAloD0MIM25qoPkrcECUhpRSlGgVTTUBaBZHQJUgizAvcrR1fZQoaAZoCWgPQwi2EOSghFJtQJSGlFKUaBVNNgFoFkdAlSEXS4OMEXV9lChoBmgJaA9DCIbkZOLWM2xAlIaUUpRoFU0rAWgWR0CVIjclPacqdX2UKGgGaAloD0MIcR5OYDpocUCUhpRSlGgVTRMBaBZHQJUiOA/cFhZ1fZQoaAZoCWgPQwiQoWMHVYtyQJSGlFKUaBVNKQFoFkdAlSJdTcZccHV9lChoBmgJaA9DCPLs8q0PXm5AlIaUUpRoFU0bAWgWR0CVIqcDr7fpdX2UKGgGaAloD0MITQ8KSlGJb0CUhpRSlGgVTWIBaBZHQJUiw0O3DvV1fZQoaAZoCWgPQwgPRBZpomZyQJSGlFKUaBVNFgFoFkdAlSLSih37lHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 296,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6861a94ca4e6fdf36b925e6ca8e3182ca8cd152d5f05f652b5375eaf67412953
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:566e0cdd5769d0acc5ba3acbd56f57cfe7238c0ec70b259c123caa70f701da54
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (195 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.8451852287204, "std_reward": 24.116481024687758, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T23:47:36.275020"}