shermansiu
commited on
Commit
•
4289a34
1
Parent(s):
eb11390
Upload LunarLander-v2 PPO agent to the Huggingface Hub
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 262.85 +/- 24.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1fede54550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1fede545e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1fede54670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1fede54700>", "_build": "<function ActorCriticPolicy._build at 0x7f1fede54790>", "forward": "<function ActorCriticPolicy.forward at 0x7f1fede54820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1fede548b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1fede54940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1fede549d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1fede54a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1fede54af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1fede54b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1fede5a400>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679786658144859151, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM6sL08t3I+0PKRPfBod75QpzM8ItUTvgAAAAAAAAAA2pvEPRqPUj70mRq+Nv2YvtYly70UjrO8AAAAAAAAAACAd8O9FPySunqKqD0A1S+z2upCOu5oY7MAAIA/AAAAAM1BhD1Du+4+C/3vvd3Mu74NGIS9mwYcvQAAAAAAAAAAenA8PscaZD8702I+T6rivt99iT4lC6m4AAAAAAAAAABGTgm+T69yPQB85TzFPWW+uIgGvpAnEL0AAAAAAAAAANMCgz5vajE/7haevQfzyL5wr4Q+pYl5vgAAAAAAAAAATWrGPgwbgz+LQRM+W237vnbiAj8vnJC9AAAAAAAAAABmbIu9CElGP2YgyjuNjLm+qEZdvL/uPj0AAAAAAAAAABouST0gkqU/slunPeJ9BL9YyeE93HfDvQAAAAAAAAAAGhSWPbJ1VT/9qUe8UsrzviVeST4yE729AAAAAAAAAAAtXiU+digrvLoGnTv3Ldu51ZeOvV4+tboAAIA/AACAP9rQkz2u+426nZLltJF1N6/o4hG7lu08NAAAgD8AAIA/mjAfvbgvtrsne5e7MkeOPMttGj0LUHG9AACAPwAAgD9zgg0+L6OoPjCk3r1ZU3y+m0E7PAtst70AAAAAAAAAABrwpb0PnSy8O8vQPMYiEz0klZy8tQ7tOwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm+jzUUYIb0CUhpRSlIwBbJRNJAGMAXSUR0CU02LEk0JodX2UKGgGaAloD0MIQiPYuP5lcECUhpRSlGgVTbcBaBZHQJTUCxrzoU11fZQoaAZoCWgPQwhnKsQjMTVwQJSGlFKUaBVNCwFoFkdAlNRLaRISUXV9lChoBmgJaA9DCHIycasgT2xAlIaUUpRoFU3aAmgWR0CU1mhV2icodX2UKGgGaAloD0MIIjMXuHydcUCUhpRSlGgVS/JoFkdAlNalDrqt5nV9lChoBmgJaA9DCPJEEOdh1XBAlIaUUpRoFU00AWgWR0CU1qrj5sTGdX2UKGgGaAloD0MIls0cktp9bUCUhpRSlGgVTRwBaBZHQJTYexTsIE91fZQoaAZoCWgPQwhXJZF90BlwQJSGlFKUaBVNDQFoFkdAlNjAQg9vCXV9lChoBmgJaA9DCBcP7zmwClBAlIaUUpRoFUuxaBZHQJTY0IdELIB1fZQoaAZoCWgPQwh+c3/1OGpwQJSGlFKUaBVNMAFoFkdAlNkRm9QGfXV9lChoBmgJaA9DCK+zIf+Mc3FAlIaUUpRoFU1eAWgWR0CU2h3FkxyodX2UKGgGaAloD0MI/BwfLQ7AckCUhpRSlGgVTSMBaBZHQJTaH3wkPc11fZQoaAZoCWgPQwik5NU5xtJwQJSGlFKUaBVNBQFoFkdAlNsqtT1kD3V9lChoBmgJaA9DCLDna5bLnE1AlIaUUpRoFUvhaBZHQJTbdrhzeXR1fZQoaAZoCWgPQwjHm/wWHcpwQJSGlFKUaBVNDAFoFkdAlNx+QZGayHV9lChoBmgJaA9DCBvYKsHiuE9AlIaUUpRoFUuZaBZHQJTdXytmthd1fZQoaAZoCWgPQwhgIt46f/1xQJSGlFKUaBVL9GgWR0CU3ftTDO1OdX2UKGgGaAloD0MIJm+Ame9SSkCUhpRSlGgVS+9oFkdAlN4NAC4jKXV9lChoBmgJaA9DCIveqYA7YXBAlIaUUpRoFU1jAWgWR0CU3odZaFEidX2UKGgGaAloD0MIbVm+LsOkcUCUhpRSlGgVTSMBaBZHQJTfhgE2YOV1fZQoaAZoCWgPQwiYvtcQHKVbQJSGlFKUaBVN6ANoFkdAlOCJkbxVhnV9lChoBmgJaA9DCC8012mkPGFAlIaUUpRoFU3oA2gWR0CU4M/eLvTgdX2UKGgGaAloD0MI+x9grZq+cECUhpRSlGgVS/hoFkdAlOFdjXnQpnV9lChoBmgJaA9DCLdhFATPOHJAlIaUUpRoFU0yAWgWR0CU4cWuX/o8dX2UKGgGaAloD0MInuxmRn+eckCUhpRSlGgVTTwBaBZHQJTh1A7gbZR1fZQoaAZoCWgPQwg826M33LVwQJSGlFKUaBVNOQFoFkdAlOIvrv9cbHV9lChoBmgJaA9DCAGnd/G+dnFAlIaUUpRoFU0XAWgWR0CU4x3c580DdX2UKGgGaAloD0MIzXUaaSnzb0CUhpRSlGgVTRABaBZHQJTjL+kxh2J1fZQoaAZoCWgPQwjdRZiinJlwQJSGlFKUaBVL8WgWR0CU40mQr+YMdX2UKGgGaAloD0MIe6NWmH4Nc0CUhpRSlGgVS+VoFkdAlOOwEIPbwnV9lChoBmgJaA9DCDW1bK2vUmBAlIaUUpRoFU3oA2gWR0CU48dvbXYldX2UKGgGaAloD0MIzlFHx1VpckCUhpRSlGgVTYsBaBZHQJTk+SzPa+N1fZQoaAZoCWgPQwjde7jkOMlxQJSGlFKUaBVNEAFoFkdAlOU63/givHV9lChoBmgJaA9DCK+WOzPBm3FAlIaUUpRoFU0JAWgWR0CU5XFTefqYdX2UKGgGaAloD0MIuVD51/IkcUCUhpRSlGgVTRwBaBZHQJTldm9QGfR1fZQoaAZoCWgPQwgB+KdUCV5uQJSGlFKUaBVNAQFoFkdAlObkyYXwb3V9lChoBmgJaA9DCKIm+nxULnJAlIaUUpRoFUviaBZHQJTnOJzkp7V1fZQoaAZoCWgPQwjwUBToE4RvQJSGlFKUaBVNBwFoFkdAlOdPl6qsEXV9lChoBmgJaA9DCAOUhhpFsHBAlIaUUpRoFU0IAWgWR0CU6FFKCg9NdX2UKGgGaAloD0MIRiI0gg0wckCUhpRSlGgVS/xoFkdAlOhj/VAiV3V9lChoBmgJaA9DCDUIc7uXgnBAlIaUUpRoFU0tAWgWR0CU6OfLcKw7dX2UKGgGaAloD0MIdeRIZyBUc0CUhpRSlGgVS/RoFkdAlOlZ4bCJoHV9lChoBmgJaA9DCOIeSx+6jmxAlIaUUpRoFUv+aBZHQJTpcRDkU9J1fZQoaAZoCWgPQwjCpPj4BA9xQJSGlFKUaBVL+WgWR0CU6fKJVKf4dX2UKGgGaAloD0MI9MDHYAVQckCUhpRSlGgVTScBaBZHQJTqnHLidat1fZQoaAZoCWgPQwg4u7VMhqNwQJSGlFKUaBVNFAFoFkdAlOykcCHRC3V9lChoBmgJaA9DCHb+7bLfj25AlIaUUpRoFU0sAWgWR0CU7dizLOiWdX2UKGgGaAloD0MIc9pTck7AQkCUhpRSlGgVS9RoFkdAlQWUoKD02HV9lChoBmgJaA9DCMqkhjZA7XBAlIaUUpRoFU0NAWgWR0CVBcJ9AooedX2UKGgGaAloD0MIpdsSuSAxckCUhpRSlGgVTREBaBZHQJUGU0Nz8xd1fZQoaAZoCWgPQwjXh/VGbcRxQJSGlFKUaBVNEAFoFkdAlQfXt8eCCnV9lChoBmgJaA9DCIodjUO9vnBAlIaUUpRoFU04AWgWR0CVB+KYAsCldX2UKGgGaAloD0MIqHFvfgO/cUCUhpRSlGgVTaYBaBZHQJUIV+AmReV1fZQoaAZoCWgPQwj4qL9eoSdxQJSGlFKUaBVNFAFoFkdAlQic495hSnV9lChoBmgJaA9DCCxJnuv70W9AlIaUUpRoFU0EAWgWR0CVCMFjd56ddX2UKGgGaAloD0MIAvOQKR/IcECUhpRSlGgVTRIBaBZHQJUJFcyFfzB1fZQoaAZoCWgPQwh/EwoRsChyQJSGlFKUaBVNCAFoFkdAlQo1BlcyFnV9lChoBmgJaA9DCIF38unxO3JAlIaUUpRoFU0uAWgWR0CVCqMYuTRqdX2UKGgGaAloD0MI0GBT51HYbkCUhpRSlGgVTRgBaBZHQJUM+YZ2pyZ1fZQoaAZoCWgPQwjAIOnTqlpvQJSGlFKUaBVNEQFoFkdAlQ3srVe8f3V9lChoBmgJaA9DCDXUKCTZX3BAlIaUUpRoFUv3aBZHQJUOJrsSkCV1fZQoaAZoCWgPQwi8k0+P7WBwQJSGlFKUaBVNEQFoFkdAlQ7yrgflqHV9lChoBmgJaA9DCEGADB17dHNAlIaUUpRoFUvgaBZHQJUP+EsasIV1fZQoaAZoCWgPQwjT2cng6FRwQJSGlFKUaBVL7WgWR0CVELr0rbxmdX2UKGgGaAloD0MIsOWV6y1bcUCUhpRSlGgVTS8BaBZHQJUQ0BxPwd91fZQoaAZoCWgPQwhMN4lBYOFuQJSGlFKUaBVNBgFoFkdAlRDfldTo+3V9lChoBmgJaA9DCO85sByhzW5AlIaUUpRoFU0WAWgWR0CVEkfWcz68dX2UKGgGaAloD0MINbdCWM2DcECUhpRSlGgVTTsBaBZHQJUSo5ggHNZ1fZQoaAZoCWgPQwj1ZWmnJuFyQJSGlFKUaBVNBwFoFkdAlRNLiADq4nV9lChoBmgJaA9DCKME/YXeDHFAlIaUUpRoFU0tAWgWR0CVE1SNOuaGdX2UKGgGaAloD0MIMA+Z8mEecUCUhpRSlGgVTRABaBZHQJUT9efI0ZZ1fZQoaAZoCWgPQwht5SX/k6JbQJSGlFKUaBVN6ANoFkdAlRSNat9x63V9lChoBmgJaA9DCP9byY4NFnJAlIaUUpRoFU0IAWgWR0CVFYxfv4M4dX2UKGgGaAloD0MIRiQKLauSckCUhpRSlGgVTRMBaBZHQJUWsuoP07N1fZQoaAZoCWgPQwidgCbChg9xQJSGlFKUaBVL8mgWR0CVFyNIK+i8dX2UKGgGaAloD0MIVMTpJJtGcUCUhpRSlGgVTUIBaBZHQJUX4Y3vQWx1fZQoaAZoCWgPQwh6UiY1dH1yQJSGlFKUaBVNBAFoFkdAlRhgxSHdoHV9lChoBmgJaA9DCK34hsKndnBAlIaUUpRoFU1KAWgWR0CVGOb1RLsbdX2UKGgGaAloD0MI34lZLwa+YECUhpRSlGgVTegDaBZHQJUY7blA/s51fZQoaAZoCWgPQwiz8PW17hpwQJSGlFKUaBVL9WgWR0CVGSoXbdrPdX2UKGgGaAloD0MIU7KchFJFb0CUhpRSlGgVTSMBaBZHQJUZPfyf+S91fZQoaAZoCWgPQwicwHRaNyZvQJSGlFKUaBVL+WgWR0CVGiBz3h4udX2UKGgGaAloD0MIbCbfbHMvckCUhpRSlGgVS+poFkdAlRpQQHzH0nV9lChoBmgJaA9DCATI0LED8GNAlIaUUpRoFU3oA2gWR0CVGrwUxmCidX2UKGgGaAloD0MIndoZpvaMcECUhpRSlGgVTRoBaBZHQJUa7QUpNK11fZQoaAZoCWgPQwiloNtLmnVwQJSGlFKUaBVNPAFoFkdAlRsyMUAT7HV9lChoBmgJaA9DCAxXB0Dc93BAlIaUUpRoFU1DAWgWR0CVHQM9bHIZdX2UKGgGaAloD0MIU5J1OLoCb0CUhpRSlGgVTQMBaBZHQJUdg4Otnwp1fZQoaAZoCWgPQwgrTrUW5tZxQJSGlFKUaBVNCAFoFkdAlR4MvIwM6XV9lChoBmgJaA9DCBnG3SBa23BAlIaUUpRoFU0AAWgWR0CVHobrC3w1dX2UKGgGaAloD0MIyyxCsVWAc0CUhpRSlGgVTWgBaBZHQJUfDmyPdVN1fZQoaAZoCWgPQwhEFf4ML8pxQJSGlFKUaBVL82gWR0CVH1vTPSlWdX2UKGgGaAloD0MIM25qoPkrcECUhpRSlGgVTTUBaBZHQJUgizAvcrR1fZQoaAZoCWgPQwi2EOSghFJtQJSGlFKUaBVNNgFoFkdAlSEXS4OMEXV9lChoBmgJaA9DCIbkZOLWM2xAlIaUUpRoFU0rAWgWR0CVIjclPacqdX2UKGgGaAloD0MIcR5OYDpocUCUhpRSlGgVTRMBaBZHQJUiOA/cFhZ1fZQoaAZoCWgPQwiQoWMHVYtyQJSGlFKUaBVNKQFoFkdAlSJdTcZccHV9lChoBmgJaA9DCPLs8q0PXm5AlIaUUpRoFU0bAWgWR0CVIqcDr7fpdX2UKGgGaAloD0MITQ8KSlGJb0CUhpRSlGgVTWIBaBZHQJUiw0O3DvV1fZQoaAZoCWgPQwgPRBZpomZyQJSGlFKUaBVNFgFoFkdAlSLSih37lHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 296, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae5773206b98fc349af1e28316852a478cd40462731a4535cd9f101131450484
|
3 |
+
size 147401
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1fede54550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1fede545e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1fede54670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1fede54700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1fede54790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1fede54820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1fede548b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1fede54940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1fede549d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1fede54a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1fede54af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1fede54b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1fede5a400>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1212416,
|
47 |
+
"_total_timesteps": 1200000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679786658144859151,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM6sL08t3I+0PKRPfBod75QpzM8ItUTvgAAAAAAAAAA2pvEPRqPUj70mRq+Nv2YvtYly70UjrO8AAAAAAAAAACAd8O9FPySunqKqD0A1S+z2upCOu5oY7MAAIA/AAAAAM1BhD1Du+4+C/3vvd3Mu74NGIS9mwYcvQAAAAAAAAAAenA8PscaZD8702I+T6rivt99iT4lC6m4AAAAAAAAAABGTgm+T69yPQB85TzFPWW+uIgGvpAnEL0AAAAAAAAAANMCgz5vajE/7haevQfzyL5wr4Q+pYl5vgAAAAAAAAAATWrGPgwbgz+LQRM+W237vnbiAj8vnJC9AAAAAAAAAABmbIu9CElGP2YgyjuNjLm+qEZdvL/uPj0AAAAAAAAAABouST0gkqU/slunPeJ9BL9YyeE93HfDvQAAAAAAAAAAGhSWPbJ1VT/9qUe8UsrzviVeST4yE729AAAAAAAAAAAtXiU+digrvLoGnTv3Ldu51ZeOvV4+tboAAIA/AACAP9rQkz2u+426nZLltJF1N6/o4hG7lu08NAAAgD8AAIA/mjAfvbgvtrsne5e7MkeOPMttGj0LUHG9AACAPwAAgD9zgg0+L6OoPjCk3r1ZU3y+m0E7PAtst70AAAAAAAAAABrwpb0PnSy8O8vQPMYiEz0klZy8tQ7tOwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.010346666666666726,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm+jzUUYIb0CUhpRSlIwBbJRNJAGMAXSUR0CU02LEk0JodX2UKGgGaAloD0MIQiPYuP5lcECUhpRSlGgVTbcBaBZHQJTUCxrzoU11fZQoaAZoCWgPQwhnKsQjMTVwQJSGlFKUaBVNCwFoFkdAlNRLaRISUXV9lChoBmgJaA9DCHIycasgT2xAlIaUUpRoFU3aAmgWR0CU1mhV2icodX2UKGgGaAloD0MIIjMXuHydcUCUhpRSlGgVS/JoFkdAlNalDrqt5nV9lChoBmgJaA9DCPJEEOdh1XBAlIaUUpRoFU00AWgWR0CU1qrj5sTGdX2UKGgGaAloD0MIls0cktp9bUCUhpRSlGgVTRwBaBZHQJTYexTsIE91fZQoaAZoCWgPQwhXJZF90BlwQJSGlFKUaBVNDQFoFkdAlNjAQg9vCXV9lChoBmgJaA9DCBcP7zmwClBAlIaUUpRoFUuxaBZHQJTY0IdELIB1fZQoaAZoCWgPQwh+c3/1OGpwQJSGlFKUaBVNMAFoFkdAlNkRm9QGfXV9lChoBmgJaA9DCK+zIf+Mc3FAlIaUUpRoFU1eAWgWR0CU2h3FkxyodX2UKGgGaAloD0MI/BwfLQ7AckCUhpRSlGgVTSMBaBZHQJTaH3wkPc11fZQoaAZoCWgPQwik5NU5xtJwQJSGlFKUaBVNBQFoFkdAlNsqtT1kD3V9lChoBmgJaA9DCLDna5bLnE1AlIaUUpRoFUvhaBZHQJTbdrhzeXR1fZQoaAZoCWgPQwjHm/wWHcpwQJSGlFKUaBVNDAFoFkdAlNx+QZGayHV9lChoBmgJaA9DCBvYKsHiuE9AlIaUUpRoFUuZaBZHQJTdXytmthd1fZQoaAZoCWgPQwhgIt46f/1xQJSGlFKUaBVL9GgWR0CU3ftTDO1OdX2UKGgGaAloD0MIJm+Ame9SSkCUhpRSlGgVS+9oFkdAlN4NAC4jKXV9lChoBmgJaA9DCIveqYA7YXBAlIaUUpRoFU1jAWgWR0CU3odZaFEidX2UKGgGaAloD0MIbVm+LsOkcUCUhpRSlGgVTSMBaBZHQJTfhgE2YOV1fZQoaAZoCWgPQwiYvtcQHKVbQJSGlFKUaBVN6ANoFkdAlOCJkbxVhnV9lChoBmgJaA9DCC8012mkPGFAlIaUUpRoFU3oA2gWR0CU4M/eLvTgdX2UKGgGaAloD0MI+x9grZq+cECUhpRSlGgVS/hoFkdAlOFdjXnQpnV9lChoBmgJaA9DCLdhFATPOHJAlIaUUpRoFU0yAWgWR0CU4cWuX/o8dX2UKGgGaAloD0MInuxmRn+eckCUhpRSlGgVTTwBaBZHQJTh1A7gbZR1fZQoaAZoCWgPQwg826M33LVwQJSGlFKUaBVNOQFoFkdAlOIvrv9cbHV9lChoBmgJaA9DCAGnd/G+dnFAlIaUUpRoFU0XAWgWR0CU4x3c580DdX2UKGgGaAloD0MIzXUaaSnzb0CUhpRSlGgVTRABaBZHQJTjL+kxh2J1fZQoaAZoCWgPQwjdRZiinJlwQJSGlFKUaBVL8WgWR0CU40mQr+YMdX2UKGgGaAloD0MIe6NWmH4Nc0CUhpRSlGgVS+VoFkdAlOOwEIPbwnV9lChoBmgJaA9DCDW1bK2vUmBAlIaUUpRoFU3oA2gWR0CU48dvbXYldX2UKGgGaAloD0MIzlFHx1VpckCUhpRSlGgVTYsBaBZHQJTk+SzPa+N1fZQoaAZoCWgPQwjde7jkOMlxQJSGlFKUaBVNEAFoFkdAlOU63/givHV9lChoBmgJaA9DCK+WOzPBm3FAlIaUUpRoFU0JAWgWR0CU5XFTefqYdX2UKGgGaAloD0MIuVD51/IkcUCUhpRSlGgVTRwBaBZHQJTldm9QGfR1fZQoaAZoCWgPQwgB+KdUCV5uQJSGlFKUaBVNAQFoFkdAlObkyYXwb3V9lChoBmgJaA9DCKIm+nxULnJAlIaUUpRoFUviaBZHQJTnOJzkp7V1fZQoaAZoCWgPQwjwUBToE4RvQJSGlFKUaBVNBwFoFkdAlOdPl6qsEXV9lChoBmgJaA9DCAOUhhpFsHBAlIaUUpRoFU0IAWgWR0CU6FFKCg9NdX2UKGgGaAloD0MIRiI0gg0wckCUhpRSlGgVS/xoFkdAlOhj/VAiV3V9lChoBmgJaA9DCDUIc7uXgnBAlIaUUpRoFU0tAWgWR0CU6OfLcKw7dX2UKGgGaAloD0MIdeRIZyBUc0CUhpRSlGgVS/RoFkdAlOlZ4bCJoHV9lChoBmgJaA9DCOIeSx+6jmxAlIaUUpRoFUv+aBZHQJTpcRDkU9J1fZQoaAZoCWgPQwjCpPj4BA9xQJSGlFKUaBVL+WgWR0CU6fKJVKf4dX2UKGgGaAloD0MI9MDHYAVQckCUhpRSlGgVTScBaBZHQJTqnHLidat1fZQoaAZoCWgPQwg4u7VMhqNwQJSGlFKUaBVNFAFoFkdAlOykcCHRC3V9lChoBmgJaA9DCHb+7bLfj25AlIaUUpRoFU0sAWgWR0CU7dizLOiWdX2UKGgGaAloD0MIc9pTck7AQkCUhpRSlGgVS9RoFkdAlQWUoKD02HV9lChoBmgJaA9DCMqkhjZA7XBAlIaUUpRoFU0NAWgWR0CVBcJ9AooedX2UKGgGaAloD0MIpdsSuSAxckCUhpRSlGgVTREBaBZHQJUGU0Nz8xd1fZQoaAZoCWgPQwjXh/VGbcRxQJSGlFKUaBVNEAFoFkdAlQfXt8eCCnV9lChoBmgJaA9DCIodjUO9vnBAlIaUUpRoFU04AWgWR0CVB+KYAsCldX2UKGgGaAloD0MIqHFvfgO/cUCUhpRSlGgVTaYBaBZHQJUIV+AmReV1fZQoaAZoCWgPQwj4qL9eoSdxQJSGlFKUaBVNFAFoFkdAlQic495hSnV9lChoBmgJaA9DCCxJnuv70W9AlIaUUpRoFU0EAWgWR0CVCMFjd56ddX2UKGgGaAloD0MIAvOQKR/IcECUhpRSlGgVTRIBaBZHQJUJFcyFfzB1fZQoaAZoCWgPQwh/EwoRsChyQJSGlFKUaBVNCAFoFkdAlQo1BlcyFnV9lChoBmgJaA9DCIF38unxO3JAlIaUUpRoFU0uAWgWR0CVCqMYuTRqdX2UKGgGaAloD0MI0GBT51HYbkCUhpRSlGgVTRgBaBZHQJUM+YZ2pyZ1fZQoaAZoCWgPQwjAIOnTqlpvQJSGlFKUaBVNEQFoFkdAlQ3srVe8f3V9lChoBmgJaA9DCDXUKCTZX3BAlIaUUpRoFUv3aBZHQJUOJrsSkCV1fZQoaAZoCWgPQwi8k0+P7WBwQJSGlFKUaBVNEQFoFkdAlQ7yrgflqHV9lChoBmgJaA9DCEGADB17dHNAlIaUUpRoFUvgaBZHQJUP+EsasIV1fZQoaAZoCWgPQwjT2cng6FRwQJSGlFKUaBVL7WgWR0CVELr0rbxmdX2UKGgGaAloD0MIsOWV6y1bcUCUhpRSlGgVTS8BaBZHQJUQ0BxPwd91fZQoaAZoCWgPQwhMN4lBYOFuQJSGlFKUaBVNBgFoFkdAlRDfldTo+3V9lChoBmgJaA9DCO85sByhzW5AlIaUUpRoFU0WAWgWR0CVEkfWcz68dX2UKGgGaAloD0MINbdCWM2DcECUhpRSlGgVTTsBaBZHQJUSo5ggHNZ1fZQoaAZoCWgPQwj1ZWmnJuFyQJSGlFKUaBVNBwFoFkdAlRNLiADq4nV9lChoBmgJaA9DCKME/YXeDHFAlIaUUpRoFU0tAWgWR0CVE1SNOuaGdX2UKGgGaAloD0MIMA+Z8mEecUCUhpRSlGgVTRABaBZHQJUT9efI0ZZ1fZQoaAZoCWgPQwht5SX/k6JbQJSGlFKUaBVN6ANoFkdAlRSNat9x63V9lChoBmgJaA9DCP9byY4NFnJAlIaUUpRoFU0IAWgWR0CVFYxfv4M4dX2UKGgGaAloD0MIRiQKLauSckCUhpRSlGgVTRMBaBZHQJUWsuoP07N1fZQoaAZoCWgPQwidgCbChg9xQJSGlFKUaBVL8mgWR0CVFyNIK+i8dX2UKGgGaAloD0MIVMTpJJtGcUCUhpRSlGgVTUIBaBZHQJUX4Y3vQWx1fZQoaAZoCWgPQwh6UiY1dH1yQJSGlFKUaBVNBAFoFkdAlRhgxSHdoHV9lChoBmgJaA9DCK34hsKndnBAlIaUUpRoFU1KAWgWR0CVGOb1RLsbdX2UKGgGaAloD0MI34lZLwa+YECUhpRSlGgVTegDaBZHQJUY7blA/s51fZQoaAZoCWgPQwiz8PW17hpwQJSGlFKUaBVL9WgWR0CVGSoXbdrPdX2UKGgGaAloD0MIU7KchFJFb0CUhpRSlGgVTSMBaBZHQJUZPfyf+S91fZQoaAZoCWgPQwicwHRaNyZvQJSGlFKUaBVL+WgWR0CVGiBz3h4udX2UKGgGaAloD0MIbCbfbHMvckCUhpRSlGgVS+poFkdAlRpQQHzH0nV9lChoBmgJaA9DCATI0LED8GNAlIaUUpRoFU3oA2gWR0CVGrwUxmCidX2UKGgGaAloD0MIndoZpvaMcECUhpRSlGgVTRoBaBZHQJUa7QUpNK11fZQoaAZoCWgPQwiloNtLmnVwQJSGlFKUaBVNPAFoFkdAlRsyMUAT7HV9lChoBmgJaA9DCAxXB0Dc93BAlIaUUpRoFU1DAWgWR0CVHQM9bHIZdX2UKGgGaAloD0MIU5J1OLoCb0CUhpRSlGgVTQMBaBZHQJUdg4Otnwp1fZQoaAZoCWgPQwgrTrUW5tZxQJSGlFKUaBVNCAFoFkdAlR4MvIwM6XV9lChoBmgJaA9DCBnG3SBa23BAlIaUUpRoFU0AAWgWR0CVHobrC3w1dX2UKGgGaAloD0MIyyxCsVWAc0CUhpRSlGgVTWgBaBZHQJUfDmyPdVN1fZQoaAZoCWgPQwhEFf4ML8pxQJSGlFKUaBVL82gWR0CVH1vTPSlWdX2UKGgGaAloD0MIM25qoPkrcECUhpRSlGgVTTUBaBZHQJUgizAvcrR1fZQoaAZoCWgPQwi2EOSghFJtQJSGlFKUaBVNNgFoFkdAlSEXS4OMEXV9lChoBmgJaA9DCIbkZOLWM2xAlIaUUpRoFU0rAWgWR0CVIjclPacqdX2UKGgGaAloD0MIcR5OYDpocUCUhpRSlGgVTRMBaBZHQJUiOA/cFhZ1fZQoaAZoCWgPQwiQoWMHVYtyQJSGlFKUaBVNKQFoFkdAlSJdTcZccHV9lChoBmgJaA9DCPLs8q0PXm5AlIaUUpRoFU0bAWgWR0CVIqcDr7fpdX2UKGgGaAloD0MITQ8KSlGJb0CUhpRSlGgVTWIBaBZHQJUiw0O3DvV1fZQoaAZoCWgPQwgPRBZpomZyQJSGlFKUaBVNFgFoFkdAlSLSih37lHVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 296,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6861a94ca4e6fdf36b925e6ca8e3182ca8cd152d5f05f652b5375eaf67412953
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:566e0cdd5769d0acc5ba3acbd56f57cfe7238c0ec70b259c123caa70f701da54
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (195 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 262.8451852287204, "std_reward": 24.116481024687758, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T23:47:36.275020"}
|