Upload of PPO trained agent using stable_baselines3
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 206.94 +/- 49.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e6f943acd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6f943acdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6f943ace50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6f943acee0>", "_build": "<function ActorCriticPolicy._build at 0x7e6f943acf70>", "forward": "<function ActorCriticPolicy.forward at 0x7e6f943ad000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6f943ad090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6f943ad120>", "_predict": "<function ActorCriticPolicy._predict at 0x7e6f943ad1b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6f943ad240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6f943ad2d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6f943ad360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e6f943a8ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 500736, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710380040526164772, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGZFpDxyuLE/YiUqP/kouL6s/ZC855ifvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBk1/2Cdz6MAWyUTT4BjAF0lEdAmw/7bYbsGHV9lChoBkdAbmzM9KVY6mgHTREBaAhHQJsR9yuIRAd1fZQoaAZHQG8cFhXr+o9oB03pAWgIR0CbFlgEEC/5dX2UKGgGR0BWR3NgSeyzaAdN6ANoCEdAmyEV7Uoa1nV9lChoBkdAbPcRaouPFWgHTRsBaAhHQJskqT6i0v51fZQoaAZHQHCPS6H0se5oB03NAWgIR0CbKBuk1uR+dX2UKGgGR0BssR/qgRK6aAdNNAFoCEdAmypjC53C9HV9lChoBkdAbXhI+W4Vh2gHTSMBaAhHQJsuDMUypJh1fZQoaAZHQG3qR02cawVoB00qAWgIR0CbMCgVXV9XdX2UKGgGR0Bwj1x6v7m/aAdNJAFoCEdAmzJO8TSLInV9lChoBkdAazv7XQMQVmgHTU0BaAhHQJs2GofjjrB1fZQoaAZHQG+fwyAQQMBoB00YAWgIR0CbOCtYSxqxdX2UKGgGR0Bw3wJZ4fOlaAdL+2gIR0CbOfSAH3UQdX2UKGgGR0Ax208eS0SiaAdNAAFoCEdAmzvSAc1fmnV9lChoBkfARJdlsguAZ2gHTRQBaAhHQJs/YfbKzRh1fZQoaAZHQD/bpIMBp6BoB0t9aAhHQJtAQgGKQ7t1fZQoaAZHQEZxivPkaMtoB0vfaAhHQJtB3fP5YYB1fZQoaAZHQEJuUt7KJVNoB0vuaAhHQJtDkKiO/+N1fZQoaAZHwEQIg+yJKrdoB00VAWgIR0CbR+l8gIQfdX2UKGgGR0Bxb+x7iQ1aaAdL7WgIR0CbSf9nscABdX2UKGgGR0BuYaJ2t+1CaAdN1gFoCEdAm065rk8zRHV9lChoBkdAa8IT4+KTCGgHTRQBaAhHQJtQzGecx0x1fZQoaAZHwEwaEs8PnSxoB0vzaAhHQJtUJ8zAN5N1fZQoaAZHQHHl/Nqxkd5oB00fAmgIR0CbWAdXDFZQdX2UKGgGR8BLaGnGbTc7aAdNBAFoCEdAm1tMSPEKmnV9lChoBkdAa3O1KGtZFGgHTSIBaAhHQJtdgCW/rSp1fZQoaAZHQG6aOlGgBcRoB03CAWgIR0CbYLgam4y5dX2UKGgGR0BokhGFzuF6aAdNgQFoCEdAm2TvGIbfg3V9lChoBkdAbklspobn5mgHTVUBaAhHQJtnYNiH6/J1fZQoaAZHQGlHZLh73PBoB00NAWgIR0CbaWmj0tiAdX2UKGgGR0Bs+WNzbN8maAdNUQFoCEdAm21mvStvGnV9lChoBkfANKmqo60Y0mgHTRIBaAhHQJtvWi7Ciyp1fZQoaAZHQE26yB06o2poB0uxaAhHQJtwqRjjJdV1fZQoaAZHQG4ZokiUxEhoB00BAWgIR0CbcpYhMajvdX2UKGgGR0Bqlwu/UONHaAdNTQFoCEdAm3a1qN6w+3V9lChoBkdAVQopRXOnmGgHTegDaAhHQJuCQKiO/+N1fZQoaAZHQFJ3zollbvBoB03oA2gIR0Cbi0FrEcbSdX2UKGgGR0Bwkgs6JZW8aAdNEgFoCEdAm41CemNzbXV9lChoBkdAa0yLronrp2gHTV4BaAhHQJuPz9XLeRB1fZQoaAZHQGysyZrpJPJoB00cAWgIR0CbkfTlDF6zdX2UKGgGR8AxmU9IPK+0aAdNOwFoCEdAm5XiZfD1oXV9lChoBkdAa2ttqpLmIWgHTV0BaAhHQJuYaFi8Wbh1fZQoaAZHQG9OLTpgTh5oB02LAWgIR0Cbm2Uh3aBadX2UKGgGR0BwM4kLQXyiaAdNCgFoCEdAm57quB+WnnV9lChoBkdAQah0nw5NoWgHS9toCEdAm6CkiQkonnV9lChoBkdAaZL+/gzguWgHTTUCaAhHQJuk7T5O8Ch1fZQoaAZHQHGbilnAZbZoB0viaAhHQJuoW2TgVGl1fZQoaAZHQHEsvC/GlyloB02PAWgIR0CbrChxHXmOdX2UKGgGR0BsiBMzuWrwaAdNaQFoCEdAm6/d74SHunV9lChoBkdAaYjgiu+yq2gHTcYBaAhHQJu1N7laKUF1fZQoaAZHQHDGoCZF5OdoB00cAWgIR0Cbt1syzolldX2UKGgGR0BxkN7laKUFaAdL9WgIR0CbuT8iOeasdX2UKGgGR0BrjdId2gWaaAdNCwFoCEdAm7y4ysS00HV9lChoBkdAalBF2mpEQWgHTTsBaAhHQJu/B5iVjZt1fZQoaAZHwDRFf8dgfEJoB0vwaAhHQJvAwsSTQmh1fZQoaAZHQGrbnsLORkpoB01KAmgIR0Cbxn6Ww/xEdX2UKGgGR0BtXdQhwEQoaAdNOQFoCEdAm8jetSydF3V9lChoBkdAbpJ3pOerdWgHTVABaAhHQJvLVa0QbuN1fZQoaAZHQHEVgAU+LWJoB0vyaAhHQJvOhJoTPB11fZQoaAZHQG7h+NkvsZ5oB00jAWgIR0Cb0KbVjI7vdX2UKGgGR0BrTsp9ZzPsaAdNUQFoCEdAm9MV09yLh3V9lChoBkdAb4UaS9ugpWgHTSoBaAhHQJvW7jLjght1fZQoaAZHQHDYBqO938poB01nAWgIR0Cb2d/pMYdidX2UKGgGR0BxEwh/y5I6aAdNtgFoCEdAm94PoicG1XV9lChoBkfAWoITcqOLi2gHTVICaAhHQJvlc1jy4F11fZQoaAZHQG5dK5LAYYRoB00SAWgIR0Cb539rGipOdX2UKGgGR0Bw2hBdD6WPaAdNTQFoCEdAm+oGTot+TnV9lChoBkdAba4qjrRjSWgHTf0BaAhHQJvvRu+AVfx1fZQoaAZHQG5CQOFxn4BoB002AWgIR0Cb8aMlkYoBdX2UKGgGR0ALkelsP8Q7aAdNAQFoCEdAm/USeRPoFHV9lChoBkdAbaW/IKc/dWgHTZkBaAhHQJv3/xBmf5F1fZQoaAZHQG3sWsq8UVVoB00BAWgIR0Cb+eEC/47BdX2UKGgGR0Bse8Of/WDpaAdNNQFoCEdAm/wysjmjkHV9lChoBkdAbhijGkvboWgHTRUBaAhHQJv/08cMmWt1fZQoaAZHQHFJqXF98Z1oB00rAWgIR0CcAjFvhqCZdX2UKGgGR0BqqFNrTH81aAdNEQJoCEdAnAfTrZ8KHHV9lChoBkdAcBXyEL6UJWgHS9ZoCEdAnAmC1/lQuXV9lChoBkdAa/+5HVf/m2gHTRoBaAhHQJwLzfXPJJZ1fZQoaAZHQFRNVqN6w+toB03oA2gIR0CcFzsC1Z1WdX2UKGgGR0BsOLu6VdHEaAdNkwFoCEdAnBo1iz9jw3V9lChoBkdAcGAuhbnoxGgHTQ4BaAhHQJwdlNtZV4p1fZQoaAZHQG2EwCCBf8doB01tAWgIR0CcIEhoM8YAdX2UKGgGR0Bub2h4+r2haAdNGQFoCEdAnCJ3MQmNR3V9lChoBkdAbS0nDR+jM2gHTSkBaAhHQJwmEgB91EF1fZQoaAZHQG6yqbrkbP1oB00SAWgIR0CcKBeqaPS2dX2UKGgGR0AUjfLs8gZCaAdLw2gIR0CcKYZjx0+1dX2UKGgGR0ByBUCxNZeSaAdL+mgIR0CcK1vjOs1bdX2UKGgGR0BxzByp71IzaAdNAAJoCEdAnDCuOXE61nV9lChoBkdARNTOHFglW2gHS/NoCEdAnDJ5nxri2nV9lChoBkdAbIJsolUp/mgHTYgBaAhHQJw1X2/SH/N1fZQoaAZHQHExCuQp4KRoB00LAWgIR0CcOLh7VrhzdX2UKGgGR0BRtPR3NcGDaAdN6ANoCEdAnEN76k6903V9lChoBkdAcJdtvXK8tmgHTR4BaAhHQJxGjIEKVpt1fZQoaAZHQGMDph4MWoFoB01WAmgIR0CcTFaz/p+udX2UKGgGR0BpOtPWQOnVaAdN1gFoCEdAnE/KltTDO3V9lChoBkdAbsHpvgm7a2gHS/1oCEdAnFGPKuB+WnV9lChoBkdAbW6V0Lc9GWgHTVMBaAhHQJxVdXOnl4l1fZQoaAZHQG2WDcuanaZoB00ZAWgIR0CcV2dVea8ZdX2UKGgGR0Bva4cHWz4UaAdNBwFoCEdAnFlScwxnF3V9lChoBkdAcXiSOBDohmgHTaMBaAhHQJxcRMpPRAt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2516, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRvo0cQhhgY7YIOI7BiCezugCMA2luY5SKEeVgDYfN2YxOItrilxBmSOsAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c903c34810e7a7b44d1a98c3afc7cddeb85d2684ca5302914a70490675fc7430
|
3 |
+
size 147682
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e6f943acd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6f943acdc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6f943ace50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6f943acee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e6f943acf70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e6f943ad000>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6f943ad090>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6f943ad120>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e6f943ad1b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6f943ad240>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6f943ad2d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6f943ad360>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e6f943a8ac0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 500736,
|
25 |
+
"_total_timesteps": 500000.0,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1710380040526164772,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGZFpDxyuLE/YiUqP/kouL6s/ZC855ifvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBk1/2Cdz6MAWyUTT4BjAF0lEdAmw/7bYbsGHV9lChoBkdAbmzM9KVY6mgHTREBaAhHQJsR9yuIRAd1fZQoaAZHQG8cFhXr+o9oB03pAWgIR0CbFlgEEC/5dX2UKGgGR0BWR3NgSeyzaAdN6ANoCEdAmyEV7Uoa1nV9lChoBkdAbPcRaouPFWgHTRsBaAhHQJskqT6i0v51fZQoaAZHQHCPS6H0se5oB03NAWgIR0CbKBuk1uR+dX2UKGgGR0BssR/qgRK6aAdNNAFoCEdAmypjC53C9HV9lChoBkdAbXhI+W4Vh2gHTSMBaAhHQJsuDMUypJh1fZQoaAZHQG3qR02cawVoB00qAWgIR0CbMCgVXV9XdX2UKGgGR0Bwj1x6v7m/aAdNJAFoCEdAmzJO8TSLInV9lChoBkdAazv7XQMQVmgHTU0BaAhHQJs2GofjjrB1fZQoaAZHQG+fwyAQQMBoB00YAWgIR0CbOCtYSxqxdX2UKGgGR0Bw3wJZ4fOlaAdL+2gIR0CbOfSAH3UQdX2UKGgGR0Ax208eS0SiaAdNAAFoCEdAmzvSAc1fmnV9lChoBkfARJdlsguAZ2gHTRQBaAhHQJs/YfbKzRh1fZQoaAZHQD/bpIMBp6BoB0t9aAhHQJtAQgGKQ7t1fZQoaAZHQEZxivPkaMtoB0vfaAhHQJtB3fP5YYB1fZQoaAZHQEJuUt7KJVNoB0vuaAhHQJtDkKiO/+N1fZQoaAZHwEQIg+yJKrdoB00VAWgIR0CbR+l8gIQfdX2UKGgGR0Bxb+x7iQ1aaAdL7WgIR0CbSf9nscABdX2UKGgGR0BuYaJ2t+1CaAdN1gFoCEdAm065rk8zRHV9lChoBkdAa8IT4+KTCGgHTRQBaAhHQJtQzGecx0x1fZQoaAZHwEwaEs8PnSxoB0vzaAhHQJtUJ8zAN5N1fZQoaAZHQHHl/Nqxkd5oB00fAmgIR0CbWAdXDFZQdX2UKGgGR8BLaGnGbTc7aAdNBAFoCEdAm1tMSPEKmnV9lChoBkdAa3O1KGtZFGgHTSIBaAhHQJtdgCW/rSp1fZQoaAZHQG6aOlGgBcRoB03CAWgIR0CbYLgam4y5dX2UKGgGR0BokhGFzuF6aAdNgQFoCEdAm2TvGIbfg3V9lChoBkdAbklspobn5mgHTVUBaAhHQJtnYNiH6/J1fZQoaAZHQGlHZLh73PBoB00NAWgIR0CbaWmj0tiAdX2UKGgGR0Bs+WNzbN8maAdNUQFoCEdAm21mvStvGnV9lChoBkfANKmqo60Y0mgHTRIBaAhHQJtvWi7Ciyp1fZQoaAZHQE26yB06o2poB0uxaAhHQJtwqRjjJdV1fZQoaAZHQG4ZokiUxEhoB00BAWgIR0CbcpYhMajvdX2UKGgGR0Bqlwu/UONHaAdNTQFoCEdAm3a1qN6w+3V9lChoBkdAVQopRXOnmGgHTegDaAhHQJuCQKiO/+N1fZQoaAZHQFJ3zollbvBoB03oA2gIR0Cbi0FrEcbSdX2UKGgGR0Bwkgs6JZW8aAdNEgFoCEdAm41CemNzbXV9lChoBkdAa0yLronrp2gHTV4BaAhHQJuPz9XLeRB1fZQoaAZHQGysyZrpJPJoB00cAWgIR0CbkfTlDF6zdX2UKGgGR8AxmU9IPK+0aAdNOwFoCEdAm5XiZfD1oXV9lChoBkdAa2ttqpLmIWgHTV0BaAhHQJuYaFi8Wbh1fZQoaAZHQG9OLTpgTh5oB02LAWgIR0Cbm2Uh3aBadX2UKGgGR0BwM4kLQXyiaAdNCgFoCEdAm57quB+WnnV9lChoBkdAQah0nw5NoWgHS9toCEdAm6CkiQkonnV9lChoBkdAaZL+/gzguWgHTTUCaAhHQJuk7T5O8Ch1fZQoaAZHQHGbilnAZbZoB0viaAhHQJuoW2TgVGl1fZQoaAZHQHEsvC/GlyloB02PAWgIR0CbrChxHXmOdX2UKGgGR0BsiBMzuWrwaAdNaQFoCEdAm6/d74SHunV9lChoBkdAaYjgiu+yq2gHTcYBaAhHQJu1N7laKUF1fZQoaAZHQHDGoCZF5OdoB00cAWgIR0Cbt1syzolldX2UKGgGR0BxkN7laKUFaAdL9WgIR0CbuT8iOeasdX2UKGgGR0BrjdId2gWaaAdNCwFoCEdAm7y4ysS00HV9lChoBkdAalBF2mpEQWgHTTsBaAhHQJu/B5iVjZt1fZQoaAZHwDRFf8dgfEJoB0vwaAhHQJvAwsSTQmh1fZQoaAZHQGrbnsLORkpoB01KAmgIR0Cbxn6Ww/xEdX2UKGgGR0BtXdQhwEQoaAdNOQFoCEdAm8jetSydF3V9lChoBkdAbpJ3pOerdWgHTVABaAhHQJvLVa0QbuN1fZQoaAZHQHEVgAU+LWJoB0vyaAhHQJvOhJoTPB11fZQoaAZHQG7h+NkvsZ5oB00jAWgIR0Cb0KbVjI7vdX2UKGgGR0BrTsp9ZzPsaAdNUQFoCEdAm9MV09yLh3V9lChoBkdAb4UaS9ugpWgHTSoBaAhHQJvW7jLjght1fZQoaAZHQHDYBqO938poB01nAWgIR0Cb2d/pMYdidX2UKGgGR0BxEwh/y5I6aAdNtgFoCEdAm94PoicG1XV9lChoBkfAWoITcqOLi2gHTVICaAhHQJvlc1jy4F11fZQoaAZHQG5dK5LAYYRoB00SAWgIR0Cb539rGipOdX2UKGgGR0Bw2hBdD6WPaAdNTQFoCEdAm+oGTot+TnV9lChoBkdAba4qjrRjSWgHTf0BaAhHQJvvRu+AVfx1fZQoaAZHQG5CQOFxn4BoB002AWgIR0Cb8aMlkYoBdX2UKGgGR0ALkelsP8Q7aAdNAQFoCEdAm/USeRPoFHV9lChoBkdAbaW/IKc/dWgHTZkBaAhHQJv3/xBmf5F1fZQoaAZHQG3sWsq8UVVoB00BAWgIR0Cb+eEC/47BdX2UKGgGR0Bse8Of/WDpaAdNNQFoCEdAm/wysjmjkHV9lChoBkdAbhijGkvboWgHTRUBaAhHQJv/08cMmWt1fZQoaAZHQHFJqXF98Z1oB00rAWgIR0CcAjFvhqCZdX2UKGgGR0BqqFNrTH81aAdNEQJoCEdAnAfTrZ8KHHV9lChoBkdAcBXyEL6UJWgHS9ZoCEdAnAmC1/lQuXV9lChoBkdAa/+5HVf/m2gHTRoBaAhHQJwLzfXPJJZ1fZQoaAZHQFRNVqN6w+toB03oA2gIR0CcFzsC1Z1WdX2UKGgGR0BsOLu6VdHEaAdNkwFoCEdAnBo1iz9jw3V9lChoBkdAcGAuhbnoxGgHTQ4BaAhHQJwdlNtZV4p1fZQoaAZHQG2EwCCBf8doB01tAWgIR0CcIEhoM8YAdX2UKGgGR0Bub2h4+r2haAdNGQFoCEdAnCJ3MQmNR3V9lChoBkdAbS0nDR+jM2gHTSkBaAhHQJwmEgB91EF1fZQoaAZHQG6yqbrkbP1oB00SAWgIR0CcKBeqaPS2dX2UKGgGR0AUjfLs8gZCaAdLw2gIR0CcKYZjx0+1dX2UKGgGR0ByBUCxNZeSaAdL+mgIR0CcK1vjOs1bdX2UKGgGR0BxzByp71IzaAdNAAJoCEdAnDCuOXE61nV9lChoBkdARNTOHFglW2gHS/NoCEdAnDJ5nxri2nV9lChoBkdAbIJsolUp/mgHTYgBaAhHQJw1X2/SH/N1fZQoaAZHQHExCuQp4KRoB00LAWgIR0CcOLh7VrhzdX2UKGgGR0BRtPR3NcGDaAdN6ANoCEdAnEN76k6903V9lChoBkdAcJdtvXK8tmgHTR4BaAhHQJxGjIEKVpt1fZQoaAZHQGMDph4MWoFoB01WAmgIR0CcTFaz/p+udX2UKGgGR0BpOtPWQOnVaAdN1gFoCEdAnE/KltTDO3V9lChoBkdAbsHpvgm7a2gHS/1oCEdAnFGPKuB+WnV9lChoBkdAbW6V0Lc9GWgHTVMBaAhHQJxVdXOnl4l1fZQoaAZHQG2WDcuanaZoB00ZAWgIR0CcV2dVea8ZdX2UKGgGR0Bva4cHWz4UaAdNBwFoCEdAnFlScwxnF3V9lChoBkdAcXiSOBDohmgHTaMBaAhHQJxcRMpPRAt1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 2516,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRvo0cQhhgY7YIOI7BiCezugCMA2luY5SKEeVgDYfN2YxOItrilxBmSOsAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": "Generator(PCG64)"
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb4dda2e59f3f6c50d0280d450e019fa186fe7b02436dce6511ae4146ee7fbcd
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bb4d6d4d3885e90d8ed4b3f8e10a11df6c900222b35819e411ec12670b899ed
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (178 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 206.9381308, "std_reward": 49.29819378399033, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-14T01:59:02.857706"}
|