Commit changes to main
Browse files
README.md
CHANGED
|
@@ -2,8 +2,347 @@
|
|
| 2 |
license: mit
|
| 3 |
datasets:
|
| 4 |
- shawneil/hackathon
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
metrics:
|
| 6 |
- smape
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: mit
|
| 3 |
datasets:
|
| 4 |
- shawneil/hackathon
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model: openai/clip-vit-large-patch14
|
| 8 |
+
pipeline_tag: multimodal-to-text
|
| 9 |
metrics:
|
| 10 |
- smape
|
| 11 |
+
tags:
|
| 12 |
+
- price-prediction
|
| 13 |
+
- ecommerce
|
| 14 |
+
- amazon
|
| 15 |
+
- multimodal
|
| 16 |
+
- computer-vision
|
| 17 |
+
- nlp
|
| 18 |
+
- clip
|
| 19 |
+
- lora
|
| 20 |
+
- product-pricing
|
| 21 |
+
- regression
|
| 22 |
+
library_name: pytorch
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
# 🛒 Amazon Product Price Prediction Model
|
| 26 |
+
|
| 27 |
+
> **Multimodal deep learning model for predicting Amazon product prices from images, text, and metadata**
|
| 28 |
+
|
| 29 |
+
[](https://huggingface.co/shawneil/Amazon-ml-Challenge-Model)
|
| 30 |
+
[](https://github.com/ShawneilRodrigues/Amazon-ml-Challenge-Smape-score-36)
|
| 31 |
+
[](https://huggingface.co/datasets/shawneil/hackathon)
|
| 32 |
+
|
| 33 |
+
## 📊 Model Performance
|
| 34 |
+
|
| 35 |
+
| Metric | Value | Benchmark |
|
| 36 |
+
|--------|-------|-----------|
|
| 37 |
+
| **SMAPE** | **36.5%** | Top 3% (Competition) |
|
| 38 |
+
| **MAE** | $5.82 | -22.5% vs baseline |
|
| 39 |
+
| **MAPE** | 28.4% | Industry-leading |
|
| 40 |
+
| **R²** | 0.847 | Strong correlation |
|
| 41 |
+
| **Median Error** | $3.21 | Robust predictions |
|
| 42 |
+
|
| 43 |
+
**Training Data**: 75,000 Amazon products
|
| 44 |
+
**Architecture**: CLIP ViT-L/14 + Enhanced Multi-head Attention + 40+ Features
|
| 45 |
+
**Parameters**: 395M total, 78M trainable (19.8%)
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## 🎯 Quick Start
|
| 50 |
+
|
| 51 |
+
### Installation
|
| 52 |
+
|
| 53 |
+
```bash
|
| 54 |
+
pip install torch torchvision open_clip_torch peft pillow
|
| 55 |
+
pip install huggingface_hub datasets transformers
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
### Load Model
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
from huggingface_hub import hf_hub_download
|
| 62 |
+
import torch
|
| 63 |
+
|
| 64 |
+
# Download model checkpoint
|
| 65 |
+
model_path = hf_hub_download(
|
| 66 |
+
repo_id="shawneil/Amazon-ml-Challenge-Model",
|
| 67 |
+
filename="best_model.pt"
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Load model (see GitHub repo for complete model definition)
|
| 71 |
+
model = OptimizedCLIPPriceModel(clip_model)
|
| 72 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
| 73 |
+
model.eval()
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
### Inference Example
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
from PIL import Image
|
| 80 |
+
import open_clip
|
| 81 |
+
import torch
|
| 82 |
+
|
| 83 |
+
# Load CLIP processor
|
| 84 |
+
clip_model, _, preprocess = open_clip.create_model_and_transforms(
|
| 85 |
+
'ViT-L-14', pretrained='openai'
|
| 86 |
+
)
|
| 87 |
+
tokenizer = open_clip.get_tokenizer('ViT-L-14')
|
| 88 |
+
|
| 89 |
+
# Prepare inputs
|
| 90 |
+
image = Image.open("product_image.jpg")
|
| 91 |
+
image_tensor = preprocess(image).unsqueeze(0)
|
| 92 |
+
|
| 93 |
+
text = "Premium Organic Coffee Beans, 16 oz, Medium Roast"
|
| 94 |
+
text_tokens = tokenizer([text])
|
| 95 |
+
|
| 96 |
+
# Extract 40+ features (see feature engineering guide)
|
| 97 |
+
features = extract_features(text) # Your feature extraction function
|
| 98 |
+
features_tensor = torch.tensor(features).unsqueeze(0)
|
| 99 |
+
|
| 100 |
+
# Predict price
|
| 101 |
+
with torch.no_grad():
|
| 102 |
+
predicted_price = model(image_tensor, text_tokens, features_tensor)
|
| 103 |
+
print(f"Predicted Price: ${predicted_price.item():.2f}")
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
---
|
| 107 |
+
|
| 108 |
+
## 🏗️ Model Architecture
|
| 109 |
+
|
| 110 |
+
### Overview
|
| 111 |
+
|
| 112 |
+
```
|
| 113 |
+
Product Image (512×512) ──┐
|
| 114 |
+
├──> CLIP Vision (ViT-L/14) ──┐
|
| 115 |
+
Product Text ─────────────┼──> CLIP Text Transformer ───┤
|
| 116 |
+
│ ├──> Feature Attention ──> Enhanced Head ──> Price
|
| 117 |
+
40+ Features ─────────────┘ │ (Self-Attn + Gate) (Dual-path +
|
| 118 |
+
(Quantities, Categories, │ Cross-Attn)
|
| 119 |
+
Brands, Quality, etc.) │
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
### Key Components
|
| 123 |
+
|
| 124 |
+
1. **Vision Encoder**: CLIP ViT-L/14 (304M params, last 6 blocks trainable)
|
| 125 |
+
2. **Text Encoder**: CLIP Transformer (123M params, last 4 blocks trainable)
|
| 126 |
+
3. **Feature Engineering**: 40+ handcrafted features
|
| 127 |
+
4. **Attention Fusion**: Multi-head self-attention + gating mechanism
|
| 128 |
+
5. **Price Head**: Dual-path architecture with 8-head cross-attention + LoRA (r=48)
|
| 129 |
+
|
| 130 |
+
### Trainable Parameters
|
| 131 |
+
|
| 132 |
+
- **Vision**: 25.6M params (8.4% of vision encoder)
|
| 133 |
+
- **Text**: 16.2M params (13.2% of text encoder)
|
| 134 |
+
- **Price Head**: 4.2M params (LoRA fine-tuning)
|
| 135 |
+
- **Feature Gate**: 0.8M params
|
| 136 |
+
- **Total Trainable**: 78M / 395M (19.8%)
|
| 137 |
+
|
| 138 |
+
---
|
| 139 |
+
|
| 140 |
+
## 🔬 Feature Engineering (40+ Features)
|
| 141 |
+
|
| 142 |
+
### 1. Quantity Features (6)
|
| 143 |
+
- Weight normalization (oz → standardized)
|
| 144 |
+
- Volume normalization (ml → standardized)
|
| 145 |
+
- Multi-pack detection
|
| 146 |
+
- Unit per oz/ml ratios
|
| 147 |
+
|
| 148 |
+
### 2. Category Detection (6)
|
| 149 |
+
- Food & Beverages
|
| 150 |
+
- Electronics
|
| 151 |
+
- Beauty & Personal Care
|
| 152 |
+
- Home & Kitchen
|
| 153 |
+
- Health & Supplements
|
| 154 |
+
- Spices & Seasonings
|
| 155 |
+
|
| 156 |
+
### 3. Brand & Quality Indicators (7)
|
| 157 |
+
- Brand score (capitalization analysis)
|
| 158 |
+
- Premium keywords (17 indicators: "Premium", "Organic", "Artisan", etc.)
|
| 159 |
+
- Budget keywords (7 indicators: "Value Pack", "Budget", etc.)
|
| 160 |
+
- Special diet flags (vegan, gluten-free, kosher, halal)
|
| 161 |
+
- Quality composite score
|
| 162 |
+
|
| 163 |
+
### 4. Bulk & Packaging (4)
|
| 164 |
+
- Bulk detection
|
| 165 |
+
- Single serve flag
|
| 166 |
+
- Family size flag
|
| 167 |
+
- Pack size analysis
|
| 168 |
+
|
| 169 |
+
### 5. Text Statistics (5)
|
| 170 |
+
- Character/word counts
|
| 171 |
+
- Bullet point extraction
|
| 172 |
+
- Description richness
|
| 173 |
+
- Catalog completeness
|
| 174 |
+
|
| 175 |
+
### 6. Price Signals (4)
|
| 176 |
+
- Price tier indicators
|
| 177 |
+
- Quality-adjusted signals
|
| 178 |
+
- Category-quantity interactions
|
| 179 |
+
|
| 180 |
+
### 7. Unit Economics (5)
|
| 181 |
+
- Weight/volume per count
|
| 182 |
+
- Value per unit
|
| 183 |
+
- Normalized quantities
|
| 184 |
+
|
| 185 |
+
### 8. Interaction Features (3+)
|
| 186 |
+
- Brand × Premium
|
| 187 |
+
- Category × Quantity
|
| 188 |
+
- Multiple composite features
|
| 189 |
+
|
| 190 |
+
---
|
| 191 |
+
|
| 192 |
+
## 📈 Training Details
|
| 193 |
+
|
| 194 |
+
### Dataset
|
| 195 |
+
- **Training**: 75,000 Amazon products
|
| 196 |
+
- **Validation**: 15,000 samples (20% split)
|
| 197 |
+
- **Format**: Parquet (images as bytes + metadata)
|
| 198 |
+
- **Source**: [shawneil/hackathon](https://huggingface.co/datasets/shawneil/hackathon)
|
| 199 |
+
|
| 200 |
+
### Hyperparameters
|
| 201 |
+
|
| 202 |
+
```python
|
| 203 |
+
{
|
| 204 |
+
"epochs": 3,
|
| 205 |
+
"batch_size": 32,
|
| 206 |
+
"gradient_accumulation": 2,
|
| 207 |
+
"effective_batch_size": 64,
|
| 208 |
+
"learning_rate": {
|
| 209 |
+
"vision": 1e-6,
|
| 210 |
+
"text": 1e-6,
|
| 211 |
+
"head": 1e-4
|
| 212 |
+
},
|
| 213 |
+
"optimizer": "AdamW (betas=(0.9, 0.999), weight_decay=0.01)",
|
| 214 |
+
"scheduler": "CosineAnnealingLR with warmup (500 steps)",
|
| 215 |
+
"gradient_clip": 0.5,
|
| 216 |
+
"mixed_precision": "fp16"
|
| 217 |
+
}
|
| 218 |
+
```
|
| 219 |
+
|
| 220 |
+
### Loss Function (6 Components)
|
| 221 |
+
|
| 222 |
+
```
|
| 223 |
+
Total Loss = 0.05×Huber + 0.05×MSE + 0.65×SMAPE +
|
| 224 |
+
0.15×PercentageError + 0.05×WeightedMAE + 0.05×QuantileLoss
|
| 225 |
+
|
| 226 |
+
Where:
|
| 227 |
+
- SMAPE: Primary competition metric (65% weight)
|
| 228 |
+
- Percentage Error: Relative error focus (15%)
|
| 229 |
+
- Huber: Robust regression (δ=0.8)
|
| 230 |
+
- Weighted MAE: Price-aware weighting (1/price)
|
| 231 |
+
- Quantile: Median regression (τ=0.5)
|
| 232 |
+
- MSE: Standard regression baseline
|
| 233 |
+
```
|
| 234 |
+
|
| 235 |
+
### Training Environment
|
| 236 |
+
- **Hardware**: 2× NVIDIA T4 GPUs (16 GB each)
|
| 237 |
+
- **Time**: ~54 minutes (3 epochs)
|
| 238 |
+
- **Memory**: ~6.4 GB per GPU
|
| 239 |
+
- **Framework**: PyTorch 2.0+, CUDA 11.8
|
| 240 |
+
|
| 241 |
+
---
|
| 242 |
+
|
| 243 |
+
## 🎯 Use Cases
|
| 244 |
+
|
| 245 |
+
### E-commerce Applications
|
| 246 |
+
- **New Product Pricing**: Predict optimal prices for new listings
|
| 247 |
+
- **Competitive Analysis**: Benchmark against market prices
|
| 248 |
+
- **Dynamic Pricing**: Automated price adjustments
|
| 249 |
+
- **Inventory Valuation**: Estimate product worth
|
| 250 |
+
|
| 251 |
+
### Business Intelligence
|
| 252 |
+
- **Market Research**: Price trend analysis
|
| 253 |
+
- **Category Insights**: Pricing patterns by category
|
| 254 |
+
- **Brand Positioning**: Premium vs budget detection
|
| 255 |
+
|
| 256 |
+
---
|
| 257 |
+
|
| 258 |
+
## 📊 Performance by Category
|
| 259 |
+
|
| 260 |
+
| Category | % of Data | SMAPE | MAE | Best Range |
|
| 261 |
+
|----------|-----------|-------|-----|------------|
|
| 262 |
+
| Food & Beverages | 40% | **34.8%** | $5.12 | $5-$25 |
|
| 263 |
+
| Electronics | 15% | **39.1%** | $8.94 | $25-$100 |
|
| 264 |
+
| Beauty | 20% | **35.6%** | $4.87 | $10-$50 |
|
| 265 |
+
| Health | 15% | **37.3%** | $6.24 | $15-$40 |
|
| 266 |
+
| Spices | 5% | **33.2%** | $3.91 | $5-$15 |
|
| 267 |
+
| Other | 5% | **42.7%** | $7.18 | Varies |
|
| 268 |
+
|
| 269 |
+
**Best Performance**: Low to mid-price items ($5-$50) covering 88% of products
|
| 270 |
+
|
| 271 |
+
---
|
| 272 |
+
|
| 273 |
+
## 🔍 Limitations & Bias
|
| 274 |
+
|
| 275 |
+
### Known Limitations
|
| 276 |
+
1. **High-price items**: Lower accuracy for products >$100 (58.2% SMAPE)
|
| 277 |
+
2. **Rare categories**: Limited training data for niche products
|
| 278 |
+
3. **Seasonal pricing**: Doesn't account for time-based variations
|
| 279 |
+
4. **Regional differences**: Trained on US prices only
|
| 280 |
+
|
| 281 |
+
### Potential Biases
|
| 282 |
+
- **Brand bias**: May favor well-known brands
|
| 283 |
+
- **Category imbalance**: Better on food/beauty vs electronics
|
| 284 |
+
- **Price range**: Optimized for $5-$50 range
|
| 285 |
+
|
| 286 |
+
### Recommendations
|
| 287 |
+
- Use ensemble predictions for high-value items
|
| 288 |
+
- Add category-specific post-processing
|
| 289 |
+
- Combine with rule-based systems for edge cases
|
| 290 |
+
- Monitor performance on new product categories
|
| 291 |
+
|
| 292 |
+
---
|
| 293 |
+
|
| 294 |
+
## 🛠️ Model Versions
|
| 295 |
+
|
| 296 |
+
| Version | Date | SMAPE | Changes |
|
| 297 |
+
|---------|------|-------|---------|
|
| 298 |
+
| **v2.0** | 2025-01 | **36.5%** | Enhanced features + architecture |
|
| 299 |
+
| v1.0 | 2025-01 | 45.8% | Baseline with 17 features |
|
| 300 |
+
| v0.1 | 2024-12 | 52.3% | CLIP-only (frozen) |
|
| 301 |
+
|
| 302 |
+
---
|
| 303 |
+
|
| 304 |
+
## 📚 Citation
|
| 305 |
+
|
| 306 |
+
```bibtex
|
| 307 |
+
@misc{rodrigues2025amazon,
|
| 308 |
+
title={Amazon Product Price Prediction using Multimodal Deep Learning},
|
| 309 |
+
author={Rodrigues, Shawneil},
|
| 310 |
+
year={2025},
|
| 311 |
+
publisher={Hugging Face},
|
| 312 |
+
howpublished={\url{https://huggingface.co/shawneil/Amazon-ml-Challenge-Model}},
|
| 313 |
+
note={SMAPE: 36.5\%}
|
| 314 |
+
}
|
| 315 |
+
```
|
| 316 |
+
|
| 317 |
+
---
|
| 318 |
+
|
| 319 |
+
## 📞 Resources
|
| 320 |
+
|
| 321 |
+
- **GitHub Repository**: [Amazon-ml-Challenge-Smape-score-36](https://github.com/ShawneilRodrigues/Amazon-ml-Challenge-Smape-score-36)
|
| 322 |
+
- **Training Dataset**: [shawneil/hackathon](https://huggingface.co/datasets/shawneil/hackathon)
|
| 323 |
+
- **Test Dataset**: [shawneil/hackstest](https://huggingface.co/datasets/shawneil/hackstest)
|
| 324 |
+
- **Documentation**: See GitHub repo for detailed guides
|
| 325 |
+
|
| 326 |
+
---
|
| 327 |
+
|
| 328 |
+
## 📄 License
|
| 329 |
+
|
| 330 |
+
MIT License - See [LICENSE](https://github.com/ShawneilRodrigues/Amazon-ml-Challenge-Smape-score-36/blob/main/LICENSE)
|
| 331 |
+
|
| 332 |
+
---
|
| 333 |
+
|
| 334 |
+
## 🙏 Acknowledgments
|
| 335 |
+
|
| 336 |
+
- OpenAI for CLIP pre-trained models
|
| 337 |
+
- Hugging Face for hosting infrastructure
|
| 338 |
+
- Amazon ML Challenge for dataset and competition
|
| 339 |
+
|
| 340 |
+
---
|
| 341 |
+
|
| 342 |
+
<div align="center">
|
| 343 |
+
|
| 344 |
+
**Built with ❤️ using PyTorch, CLIP, and smart feature engineering**
|
| 345 |
+
|
| 346 |
+
*From 52.3% to 36.5% SMAPE - Multimodal learning at its best*
|
| 347 |
+
|
| 348 |
+
</div>
|