shasha168's picture
Upload PPO LunarLander-v2 trained agent
7b46d42
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c812eb6bc70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c812eb6bd00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c812eb6bd90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c812eb6be20>", "_build": "<function ActorCriticPolicy._build at 0x7c812eb6beb0>", "forward": "<function ActorCriticPolicy.forward at 0x7c812eb6bf40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c812eb7c040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c812eb7c0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c812eb7c160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c812eb7c1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c812eb7c280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c812eb7c310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c812eb133c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696883216009786468, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGay7LvJFbM/r6mlvVr8KL43U0I83pC/PAAAAAAAAAAAWmWXPqSrDrsgZ168wHbLOERCVbxwov61AACAPwAAAADALHw+qK/yvPeTPjwSVye7aoRWvgsw87sAAIA/AACAPxrOpT3OeLM+Tl54vpk9tb6Pkga+PTDbvQAAAAAAAAAAGiyTPWjcJT+GyuK98vS9vj6UijzQl+C9AAAAAAAAAADzO6m9qzSWP/otob6zWeu+I6mevcBNIr4AAAAAAAAAAGb0ETx9jIs+CzJDvO1es746PV69dr5DPQAAAAAAAAAAzRr9vau3KD/64OA9G/jCvq44ir0m0KE9AAAAAAAAAABNIVC9dk4pvEI0BT3F8UY8z66LvUrqJz0AAIA/AACAP+2Gdj6qM4I/536oPgCP1b5YVvM+HqjZPQAAAAAAAAAAGkzdvaz3ZD6Gl3A+hTDAvjBCLD0sJI09AAAAAAAAAAAAAAK7BYvBu9Y4aDzrTIc8gTMNPRirZL0AAIA/AACAP80kTr3cOhW8sjuBu8Q7ijyxeX897nNmvQAAgD8AAIA/ANLwvGgFoby98xC8fW8JPeaH3z2wtpO8AACAPwAAgD8zG8Q8KRhiugj597vTd6w8J7nHusnNlL0AAIA/AACAP8DB9r3EUZU+g0FfPrQhpb6gOFU9AgGrvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGEoplSS/2MAWyUS9+MAXSUR0ChzkTSb6P9dX2UKGgGR0By7DIhhYvGaAdL72gIR0Chzrp8fFJhdX2UKGgGR0BzMcGJN0vHaAdL22gIR0ChzvrZSNwSdX2UKGgGR0ByOHvlU6xPaAdL62gIR0ChzwA3kxREdX2UKGgGR0BxkGfVZs9CaAdL5WgIR0ChzzLVWjoIdX2UKGgGR0BxMAwyqMm4aAdL82gIR0Chz3ZFgDzRdX2UKGgGR0BzB4yeqaPTaAdL12gIR0Chz8nhKlHjdX2UKGgGR0BzqTk/8l5XaAdL+GgIR0Chz/r8BMi9dX2UKGgGR0Byak/fO2RaaAdL12gIR0Ch0ABO58SgdX2UKGgGR0BwUkdCE6DHaAdL8WgIR0Ch0FKlpGnXdX2UKGgGR0Bwu3Zg5R0maAdL22gIR0Ch0Hw1rIo3dX2UKGgGR0BwtSxMWXTmaAdL7WgIR0Ch0MpCa7VbdX2UKGgGR0Bw6YbNr0rcaAdL9WgIR0Ch0QY5tFa0dX2UKGgGR0Bxjy4I8hcJaAdL02gIR0Ch0TZVn27GdX2UKGgGR0BvyrPGACnxaAdL0GgIR0Ch0W0HhS9/dX2UKGgGR0Bx13zCk43naAdL4GgIR0Ch0cJzDGcXdX2UKGgGR0BvAOjoIOYqaAdL7WgIR0Ch0htb1RLsdX2UKGgGR0BziYRJ2+wlaAdL2GgIR0Ch0kjArQPadX2UKGgGR0Bzu7b7CSA6aAdL3mgIR0Ch0uPqkdmydX2UKGgGR0Bw32iaiKziaAdL7WgIR0Ch0uvpIMBqdX2UKGgGR0Bwcev0RODbaAdL/WgIR0Ch0zwnx8UmdX2UKGgGR0BzdHsdDIBBaAdL4mgIR0Ch00dDx9XtdX2UKGgGR0BxCBMj/uLKaAdL7WgIR0Ch09K9GqgidX2UKGgGR0By+b79AHE/aAdL6WgIR0Ch0/nxz7uVdX2UKGgGR0BujCQmu1WsaAdL7GgIR0Ch1ANQsPJ8dX2UKGgGR0BwlIXenAIqaAdL22gIR0Ch1Elz2exwdX2UKGgGR0B0BYRdyDIzaAdL0GgIR0Ch1G8FY+0PdX2UKGgGR0By+BEWqLjxaAdL9GgIR0Ch1IgRkEs8dX2UKGgGR8BkYznoxHoYaAdLrWgIR0Ch1M6v7m+1dX2UKGgGR0BxN2QPqcEvaAdL7WgIR0Ch1V+MZP2xdX2UKGgGR0Bx1cDlo11oaAdL4GgIR0Ch1V68pTdddX2UKGgGR0ByGrsTnJT3aAdL+mgIR0Ch1Wb3Gn4xdX2UKGgGR0Bwz4jqv/zbaAdL5mgIR0Ch1hgFPi1idX2UKGgGR0BuZg9C/oJRaAdL3mgIR0Ch1iJIlMRIdX2UKGgGR0BxuIi3XqZ/aAdL7WgIR0Ch372icoYvdX2UKGgGR0BytemFajesaAdL2WgIR0Ch38MjeKsNdX2UKGgGR0BxPsd6sySFaAdL8mgIR0Ch39VLamGedX2UKGgGR0Bw21NBWxQjaAdL7GgIR0Ch3/gkTpPidX2UKGgGR0ByjmxqwhW6aAdL0GgIR0Ch4FwgTyrgdX2UKGgGR0ByeVSGahHtaAdL5mgIR0Ch4HcpTdcjdX2UKGgGR0Bxj+fqX4TLaAdL9WgIR0Ch4KEauOjqdX2UKGgGR0BxRuqbSZ0CaAdNAgFoCEdAoeCuS0Sh8XV9lChoBkdAbsSPIXCTEGgHS+JoCEdAoeC3tBv733V9lChoBkdAbiAASWZ7X2gHS9xoCEdAoeC1JJ5E+nV9lChoBkdAcggU70WdmWgHS8xoCEdAoeC3zcynDXV9lChoBkdAb9O+lCTlk2gHS9poCEdAoeE7PldTpHV9lChoBkdAcp7KAavRq2gHS+poCEdAoeFl5le4TnV9lChoBkdAbljeUILPU2gHTQUBaAhHQKHhtRAKOT91fZQoaAZHQHHgCx/ustFoB0vjaAhHQKHh1vJiiIt1fZQoaAZHQHDDbC79Q41oB0vraAhHQKHh8TK1XvJ1fZQoaAZHQHBg14X40uVoB0vUaAhHQKHiRJ6IFeR1fZQoaAZHQHM5xp5/smhoB0vhaAhHQKHict8uzyB1fZQoaAZHQHEdnM6ij+JoB0vpaAhHQKHinDF6zE91fZQoaAZHQHHUtDIBBAxoB0v+aAhHQKHi/GsFMZh1fZQoaAZHQG2RrUsnRb9oB0vmaAhHQKHjWh24d6t1fZQoaAZHQHGTtxdY4hloB0viaAhHQKHjY/PgNw11fZQoaAZHQHLgcslLOA1oB00KAWgIR0Ch4463qiXZdX2UKGgGR0B0MRRgqmTDaAdL9WgIR0Ch45lb/wRXdX2UKGgGR0ByL8R5C4SZaAdL0mgIR0Ch481jI7vHdX2UKGgGR0BwMBlkH2RJaAdNBAFoCEdAoePVZs9B8nV9lChoBkdAcUwe4TbnHWgHS+doCEdAoeQ+UfPom3V9lChoBkfAXxdPM0P6K2gHTSgBaAhHQKHkRFVDKHR1fZQoaAZHQHFNGbXpW3loB0vcaAhHQKHkbAprk811fZQoaAZHQHCEHk92X9loB0vMaAhHQKHke6kqMFV1fZQoaAZHQHHkHO0LMLZoB0vwaAhHQKHkxn3cpLF1fZQoaAZHQG2sfYzzmOloB0vlaAhHQKHlDTcZccF1fZQoaAZHQG2BFFMIu5BoB0vWaAhHQKHlNJgb6xh1fZQoaAZHQHJHWszVMEloB0vmaAhHQKHlPhqCYkV1fZQoaAZHQHHe2RNh3JRoB0vpaAhHQKHl0JNTLnt1fZQoaAZHQG2QV1wHZ9NoB0vxaAhHQKHmQzpHI6t1fZQoaAZHQHFfbDye7MBoB0vlaAhHQKHmUqR2bG51fZQoaAZHQHPVmP5pJwtoB00CAWgIR0Ch5ojkMkQgdX2UKGgGR0BzKnl/6O5saAdL5WgIR0Ch5pWHLzPKdX2UKGgGR0BxEiOU+s5oaAdNAwFoCEdAoebCZ0CA+nV9lChoBkdAcj+hXr+o+GgHS/RoCEdAoebMLYwqRXV9lChoBkdAcWoEV32VV2gHS/BoCEdAoecydxyXD3V9lChoBkdAcYkf779AHGgHS+1oCEdAoedYoPTXrnV9lChoBkdAcdALxqfvnmgHTQABaAhHQKHnZ87ZFod1fZQoaAZHQHIqvzasZHdoB0v5aAhHQKHnkKneizt1fZQoaAZHQG+biQDFId5oB0viaAhHQKHnnXPJJXh1fZQoaAZHQHDudkBjnV5oB0vJaAhHQKHnn24/eLx1fZQoaAZHQHJMdHMEA5toB0vmaAhHQKHoKOI68xt1fZQoaAZHQHI6AHiWE9NoB0vJaAhHQKHoaDPGACp1fZQoaAZHQHNYS9EkSmJoB00GAWgIR0Ch6IkN4JNTdX2UKGgGR0Bw7U5OrQw9aAdL2mgIR0Ch6S9Y4hlldX2UKGgGR0BwvU8A7xNJaAdL+GgIR0Ch6ZOaWom5dX2UKGgGR0Bu/ij+JgstaAdL6mgIR0Ch6fPxx1gZdX2UKGgGR0BzOJ3np0OmaAdNAwFoCEdAoeogG4ZuRHV9lChoBkdAcGC+Pikwe2gHS/NoCEdAoeolkz41xnV9lChoBkdAcOlA8SwnpmgHS9loCEdAoeph60IC2nV9lChoBkdAcfFQNCqp+GgHS99oCEdAoeqFfAsTWXV9lChoBkdAcX6aqCHymWgHS/JoCEdAoeqYfKZDzHV9lChoBkdAcJwOW0JF9mgHS+ZoCEdAoerdruYx+XV9lChoBkdAc3FgxJul42gHTQQBaAhHQKHrULk0aZR1fZQoaAZHQHKLEHhS9/VoB00GAWgIR0Ch60stkFwDdX2UKGgGR0Bx6lQGfPHDaAdL72gIR0Ch68fgBLf2dX2UKGgGR0BxDu4kNWluaAdL4GgIR0Ch6+HavicYdX2UKGgGR0Byhd58jRlZaAdL/WgIR0Ch7LBib2DhdX2UKGgGR0BwouTkhib2aAdL5WgIR0Ch7S5IYm9hdX2UKGgGR0Bx6fub7TDwaAdL2GgIR0Ch7XI3R5TqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}