sharkMeow commited on
Commit
d9a6314
1 Parent(s): de144b4

Model save

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: OFA-Sys/chinese-clip-vit-base-patch16
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: aoi_clip_high_resolution_concate_fusin_gpt_random_sampler
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/4jms502r)
16
+ # aoi_clip_high_resolution_concate_fusin_gpt_random_sampler
17
+
18
+ This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 2.9963
21
+ - Accuracy: 0.0502
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 40
42
+ - eval_batch_size: 20
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 5
45
+ - total_train_batch_size: 200
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 100.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-------:|:-----:|:---------------:|:--------:|
55
+ | 0.0008 | 9.9872 | 3110 | 3.0008 | 0.0500 |
56
+ | 0.0007 | 19.9743 | 6220 | 2.9971 | 0.0501 |
57
+ | 0.0007 | 29.9615 | 9330 | 2.9971 | 0.0501 |
58
+ | 0.0007 | 39.9486 | 12440 | 2.9988 | 0.0500 |
59
+ | 0.0007 | 49.9358 | 15550 | 2.9968 | 0.0499 |
60
+ | 0.0007 | 59.9229 | 18660 | 2.9966 | 0.0502 |
61
+ | 0.0007 | 69.9101 | 21770 | 2.9961 | 0.0503 |
62
+ | 0.0007 | 79.8972 | 24880 | 2.9967 | 0.0503 |
63
+ | 0.0007 | 89.8844 | 27990 | 2.9966 | 0.0503 |
64
+ | 0.0007 | 99.8715 | 31100 | 2.9963 | 0.0502 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.42.3
70
+ - Pytorch 2.3.1+cu121
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.19.1