Model save
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: OFA-Sys/chinese-clip-vit-base-patch16
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: aoi_clip_high_resolution_concate_fusin_gpt_random_sampler
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/4jms502r)
|
16 |
+
# aoi_clip_high_resolution_concate_fusin_gpt_random_sampler
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.9963
|
21 |
+
- Accuracy: 0.0502
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 40
|
42 |
+
- eval_batch_size: 20
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 5
|
45 |
+
- total_train_batch_size: 200
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 100.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
|
55 |
+
| 0.0008 | 9.9872 | 3110 | 3.0008 | 0.0500 |
|
56 |
+
| 0.0007 | 19.9743 | 6220 | 2.9971 | 0.0501 |
|
57 |
+
| 0.0007 | 29.9615 | 9330 | 2.9971 | 0.0501 |
|
58 |
+
| 0.0007 | 39.9486 | 12440 | 2.9988 | 0.0500 |
|
59 |
+
| 0.0007 | 49.9358 | 15550 | 2.9968 | 0.0499 |
|
60 |
+
| 0.0007 | 59.9229 | 18660 | 2.9966 | 0.0502 |
|
61 |
+
| 0.0007 | 69.9101 | 21770 | 2.9961 | 0.0503 |
|
62 |
+
| 0.0007 | 79.8972 | 24880 | 2.9967 | 0.0503 |
|
63 |
+
| 0.0007 | 89.8844 | 27990 | 2.9966 | 0.0503 |
|
64 |
+
| 0.0007 | 99.8715 | 31100 | 2.9963 | 0.0502 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.42.3
|
70 |
+
- Pytorch 2.3.1+cu121
|
71 |
+
- Datasets 2.20.0
|
72 |
+
- Tokenizers 0.19.1
|