sharkMeow commited on
Commit
3d8c17c
1 Parent(s): 79a57bb

Model save

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: OFA-Sys/chinese-clip-vit-base-patch16
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: aoi_clip_high_resolution_concateFusion_gpt_froce_same_aoi_256_256
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/70p4wo9u)
16
+ # aoi_clip_high_resolution_concateFusion_gpt_froce_same_aoi_256_256
17
+
18
+ This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 4.4601
21
+ - Accuracy: 0.0942
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 25
42
+ - eval_batch_size: 20
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 200
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 200.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:--------:|:----:|:---------------:|:--------:|
55
+ | 0.8826 | 19.9458 | 920 | 3.4826 | 0.1045 |
56
+ | 0.5489 | 39.8916 | 1840 | 3.5595 | 0.1049 |
57
+ | 0.5099 | 59.8374 | 2760 | 3.6743 | 0.1007 |
58
+ | 0.4939 | 79.7832 | 3680 | 3.7631 | 0.1004 |
59
+ | 0.4833 | 99.7290 | 4600 | 4.0003 | 0.0988 |
60
+ | 0.4777 | 119.6748 | 5520 | 4.0105 | 0.0973 |
61
+ | 0.472 | 139.6206 | 6440 | 4.1967 | 0.0965 |
62
+ | 0.472 | 159.5664 | 7360 | 4.2894 | 0.0954 |
63
+ | 0.4717 | 179.5122 | 8280 | 4.4150 | 0.0945 |
64
+ | 0.4665 | 199.4580 | 9200 | 4.4601 | 0.0942 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.42.3
70
+ - Pytorch 2.3.1+cu121
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.19.1