shalchianmh
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: agpl-3.0
|
3 |
+
pipeline_tag: object-detection
|
4 |
+
tags:
|
5 |
+
- ultralytics
|
6 |
+
- tracking
|
7 |
+
- instance-segmentation
|
8 |
+
- image-classification
|
9 |
+
- pose-estimation
|
10 |
+
- obb
|
11 |
+
- object-detection
|
12 |
+
- yolo
|
13 |
+
- yolov8
|
14 |
+
- license_plate
|
15 |
+
- Iran
|
16 |
+
- veichle_lisence_plate
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
## <div align="center">Documentation</div>
|
21 |
+
|
22 |
+
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
|
23 |
+
|
24 |
+
<details open>
|
25 |
+
<summary>Install</summary>
|
26 |
+
|
27 |
+
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
|
28 |
+
|
29 |
+
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
|
30 |
+
|
31 |
+
```bash
|
32 |
+
pip install ultralytics
|
33 |
+
```
|
34 |
+
|
35 |
+
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
|
36 |
+
|
37 |
+
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
|
38 |
+
|
39 |
+
</details>
|
40 |
+
|
41 |
+
<details open>
|
42 |
+
<summary>Usage</summary>
|
43 |
+
|
44 |
+
### CLI
|
45 |
+
|
46 |
+
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
|
47 |
+
|
48 |
+
```bash
|
49 |
+
yolo predict model=YOLOv8m_Iran_license_plate_detection.pt source='your_image.jpg'
|
50 |
+
```
|
51 |
+
|
52 |
+
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
|
53 |
+
|
54 |
+
### Python
|
55 |
+
|
56 |
+
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
|
57 |
+
|
58 |
+
```python
|
59 |
+
from ultralytics import YOLO
|
60 |
+
# Load a model
|
61 |
+
model = YOLO("YOLOv8m_Iran_license_plate_detection.pt")
|
62 |
+
# Train the model
|
63 |
+
train_results = model.train(
|
64 |
+
data="Iran_license_plate.yaml", # path to dataset YAML
|
65 |
+
epochs=100, # number of training epochs
|
66 |
+
imgsz=640, # training image size
|
67 |
+
device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
|
68 |
+
)
|
69 |
+
# Evaluate model performance on the validation set
|
70 |
+
metrics = model.val()
|
71 |
+
# Perform object detection on an image
|
72 |
+
results = model("path/to/image.jpg")
|
73 |
+
results[0].show()
|
74 |
+
# Export the model to ONNX format
|
75 |
+
path = model.export(format="onnx") # return path to exported model
|
76 |
+
```
|
77 |
+
|
78 |
+
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
|
79 |
+
|
80 |
+
</details>
|