shahukareem commited on
Commit
5a9f5d9
1 Parent(s): 94fe943

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -18
README.md CHANGED
@@ -24,7 +24,7 @@ model-index:
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
- value: 52.07
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Dhivehi
@@ -52,15 +52,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
- \treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
- \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
@@ -88,37 +88,51 @@ processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-5
88
  model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi")
89
  model.to("cuda")
90
 
91
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\،\\.\\؟\\!\\'\\"\\–\\’]'
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
- \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
- \treturn batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
- \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
- \twith torch.no_grad():
110
- \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
- \tpred_ids = torch.argmax(logits, dim=-1)
113
- \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
- \treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
118
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
119
  ```
120
 
121
- **Test Result**: 52.07 %
122
 
123
  ## Training
124
- The Common Voice `train` and `validation` datasets were used for training.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
+ value: 33.10
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Dhivehi
 
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ return batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
 
88
  model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi")
89
  model.to("cuda")
90
 
91
+ chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�\\\\،\\\\.\\\\؟\\\\!\\\\'\\\\"\\\\–\\\\’]'
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ return batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
+ with torch.no_grad():
110
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
+ pred_ids = torch.argmax(logits, dim=-1)
113
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ return batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
118
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
119
  ```
120
 
121
+ **Test Result**: 33.10%
122
 
123
  ## Training
124
+ The Common Voice `train` and `validation` datasets were used for training.
125
+
126
+ ## Example predictions
127
+ reference: ކަރަންޓް ވައިރުކޮށް ބޮކި ހަރުކުރުން
128
+ predicted: ކަރަންޓް ވައިރުކޮށް ބޮކި ހަރުކުރުން
129
+ --
130
+ reference: ދެން އެކުދިންނާ ދިމާއަށް އަތް ދިށްކޮށްލެވެ
131
+ predicted: ދެން އެކުދިންނާ ދިމާއަށް އަތް ދިއްކޮށްލެވެ ް
132
+ --
133
+ reference: ރަކި ހިނިތުންވުމަކާއެކު އޭނާ އަމިއްލައަށް ތައާރަފްވި
134
+ predicted: ރަކި ހިނިތުންވުމަކާއެކު އޭނާ އަމިއްލައަށް ތައަރަފްވި
135
+ --
136
+ reference: ކޮޓަރީގެ ކުޑަދޮރުން ބޭރު ބަލަހައްޓައިގެން އިން ރޫނާގެ މޫނުމަތިން ފާޅުވަމުން ދިޔައީ ކަންބޮޑުވުމުގެ އަސަރުތައް
137
+ predicted: ކޮޓަރީގެ ކުޑަދޮރުން ބޭރު ބަލަހައްޓައިގެން އިން ރނާގެ މޫނުމަތިން ފާޅުވަމުން ދިޔައީ ކަންބޮޑުވުމުގެ އަސަރުތައް
138
+ --