shafire commited on
Commit
57d7c17
1 Parent(s): 755053c

Create redme.md

Browse files
Files changed (1) hide show
  1. redme.md +79 -0
redme.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-generation-inference
5
+ - text-generation
6
+ - peft
7
+ library_name: transformers
8
+ base_model: meta-llama/Meta-Llama-3.1-8B
9
+ widget:
10
+ - messages:
11
+ - role: user
12
+ content: What challenges do you enjoy solving?
13
+ license: apache-2.0
14
+ ---
15
+
16
+ **SpectraMind Quantum LLM** **GGUF-Compatible and Fully Optimized**
17
+
18
+ ![SpectraMind](https://huggingface.co/shafire/SpectraMind/resolve/main/spectramind.png)
19
+
20
+ SpectraMind is an advanced, multi-layered language model built with quantum-inspired data processing techniques. Trained on custom datasets with unique quantum reasoning enhancements, SpectraMind integrates ethical decision-making frameworks with deep problem-solving capabilities, handling complex, multi-dimensional tasks with precision.
21
+
22
+ ![SpectraMind Performance](https://huggingface.co/shafire/SpectraMind/resolve/main/performance_chart.png)
23
+
24
+ <a href="https://www.youtube.com/watch?v=xyz123">Watch Our Model in Action</a>
25
+
26
+ **Use Cases**:
27
+ This model is ideal for advanced NLP tasks, including ethical decision-making, multi-variable reasoning, and comprehensive problem-solving in quantum and mathematical contexts.
28
+
29
+ **Key Highlights of SpectraMind:**
30
+
31
+ - **Quantum-Enhanced Reasoning**: Designed for tackling complex ethical questions and multi-layered logic problems, SpectraMind applies quantum-math techniques in AI for nuanced solutions.
32
+ - **Refined Dataset Curation**: Data was refined over multiple iterations, focusing on clarity and consistency, to align with SpectraMind's quantum-based reasoning.
33
+ - **Iterative Training**: The model underwent extensive testing phases to ensure accurate and reliable responses.
34
+ - **Optimized for CPU Inference**: Compatible with web UIs and desktop interfaces like `oobabooga` and `lm studio`, and performs well in self-hosted environments for CPU-only setups.
35
+
36
+ **Model Overview**
37
+
38
+ - **Developer**: Shafaet Brady Hussain - [ResearchForum](https://researchforum.online)
39
+ - **Funded by**: [Researchforum.online](https://researchforum.online)
40
+ - **Language**: English
41
+ - **Model Type**: Causal Language Model
42
+ - **Base Model**: LLaMA 3.1 8B (Meta)
43
+ - **License**: Apache-2.0
44
+
45
+ **Usage**: Run on any web interface or as a bot for self-hosted solutions. Designed to run smoothly on CPU.
46
+
47
+ **Tested on CPU - Ideal for Local and Self-Hosted Environments**
48
+
49
+ AGENT INTERFACE DETAILS:
50
+ ![SpectraMind Agent Interface](https://huggingface.co/shafire/SpectraMind/resolve/main/interface_screenshot.png)
51
+
52
+ ---
53
+
54
+ ### Usage Code Example:
55
+
56
+ You can load and interact with SpectraMind using the following code snippet:
57
+
58
+ ```python
59
+ from transformers import AutoModelForCausalLM, AutoTokenizer
60
+
61
+ model_path = "PATH_TO_THIS_REPO"
62
+
63
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
64
+ model = AutoModelForCausalLM.from_pretrained(
65
+ model_path,
66
+ device_map="auto",
67
+ torch_dtype="auto"
68
+ ).eval()
69
+
70
+ # Example prompt
71
+ messages = [
72
+ {"role": "user", "content": "What challenges do you enjoy solving?"}
73
+ ]
74
+
75
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
76
+ output_ids = model.generate(input_ids.to("cuda"))
77
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
78
+
79
+ print(response) # Prints the model's response