update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: chemical-bert-uncased-finetuned-cust-c1-cust
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# chemical-bert-uncased-finetuned-cust-c1-cust
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [shafin/chemical-bert-uncased-finetuned-cust](https://huggingface.co/shafin/chemical-bert-uncased-finetuned-cust) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.5420
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 2e-05
|
36 |
+
- train_batch_size: 64
|
37 |
+
- eval_batch_size: 64
|
38 |
+
- seed: 42
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- num_epochs: 200
|
42 |
+
- mixed_precision_training: Native AMP
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
48 |
+
| 1.96 | 1.0 | 63 | 1.6719 |
|
49 |
+
| 1.7095 | 2.0 | 126 | 1.5305 |
|
50 |
+
| 1.5634 | 3.0 | 189 | 1.2972 |
|
51 |
+
| 1.4785 | 4.0 | 252 | 1.3354 |
|
52 |
+
| 1.3991 | 5.0 | 315 | 1.2542 |
|
53 |
+
| 1.3482 | 6.0 | 378 | 1.1870 |
|
54 |
+
| 1.2984 | 7.0 | 441 | 1.1844 |
|
55 |
+
| 1.2589 | 8.0 | 504 | 1.1262 |
|
56 |
+
| 1.1762 | 9.0 | 567 | 1.1176 |
|
57 |
+
| 1.1724 | 10.0 | 630 | 1.0312 |
|
58 |
+
| 1.1222 | 11.0 | 693 | 1.0113 |
|
59 |
+
| 1.1021 | 12.0 | 756 | 1.0518 |
|
60 |
+
| 1.0646 | 13.0 | 819 | 1.0433 |
|
61 |
+
| 1.0273 | 14.0 | 882 | 0.9634 |
|
62 |
+
| 1.0187 | 15.0 | 945 | 0.9299 |
|
63 |
+
| 0.9854 | 16.0 | 1008 | 0.9458 |
|
64 |
+
| 0.9799 | 17.0 | 1071 | 0.9733 |
|
65 |
+
| 0.95 | 18.0 | 1134 | 0.9169 |
|
66 |
+
| 0.934 | 19.0 | 1197 | 0.9246 |
|
67 |
+
| 0.907 | 20.0 | 1260 | 0.8939 |
|
68 |
+
| 0.8974 | 21.0 | 1323 | 0.8575 |
|
69 |
+
| 0.8749 | 22.0 | 1386 | 0.8513 |
|
70 |
+
| 0.8526 | 23.0 | 1449 | 0.8089 |
|
71 |
+
| 0.8359 | 24.0 | 1512 | 0.8600 |
|
72 |
+
| 0.8292 | 25.0 | 1575 | 0.8517 |
|
73 |
+
| 0.8263 | 26.0 | 1638 | 0.8293 |
|
74 |
+
| 0.8033 | 27.0 | 1701 | 0.7747 |
|
75 |
+
| 0.7999 | 28.0 | 1764 | 0.8169 |
|
76 |
+
| 0.7778 | 29.0 | 1827 | 0.7981 |
|
77 |
+
| 0.7574 | 30.0 | 1890 | 0.7457 |
|
78 |
+
| 0.7581 | 31.0 | 1953 | 0.7504 |
|
79 |
+
| 0.7404 | 32.0 | 2016 | 0.7637 |
|
80 |
+
| 0.7332 | 33.0 | 2079 | 0.7902 |
|
81 |
+
| 0.7314 | 34.0 | 2142 | 0.7185 |
|
82 |
+
| 0.7209 | 35.0 | 2205 | 0.7534 |
|
83 |
+
| 0.6902 | 36.0 | 2268 | 0.7334 |
|
84 |
+
| 0.6973 | 37.0 | 2331 | 0.7069 |
|
85 |
+
| 0.687 | 38.0 | 2394 | 0.6820 |
|
86 |
+
| 0.6658 | 39.0 | 2457 | 0.7155 |
|
87 |
+
| 0.6697 | 40.0 | 2520 | 0.7149 |
|
88 |
+
| 0.6584 | 41.0 | 2583 | 0.7413 |
|
89 |
+
| 0.6638 | 42.0 | 2646 | 0.7245 |
|
90 |
+
| 0.6282 | 43.0 | 2709 | 0.7177 |
|
91 |
+
| 0.6418 | 44.0 | 2772 | 0.6653 |
|
92 |
+
| 0.6323 | 45.0 | 2835 | 0.7715 |
|
93 |
+
| 0.6256 | 46.0 | 2898 | 0.7269 |
|
94 |
+
| 0.6109 | 47.0 | 2961 | 0.6744 |
|
95 |
+
| 0.6133 | 48.0 | 3024 | 0.6816 |
|
96 |
+
| 0.595 | 49.0 | 3087 | 0.6969 |
|
97 |
+
| 0.6058 | 50.0 | 3150 | 0.6965 |
|
98 |
+
| 0.5961 | 51.0 | 3213 | 0.6988 |
|
99 |
+
| 0.587 | 52.0 | 3276 | 0.6727 |
|
100 |
+
| 0.5861 | 53.0 | 3339 | 0.6327 |
|
101 |
+
| 0.5758 | 54.0 | 3402 | 0.6538 |
|
102 |
+
| 0.5692 | 55.0 | 3465 | 0.6612 |
|
103 |
+
| 0.567 | 56.0 | 3528 | 0.5989 |
|
104 |
+
| 0.5514 | 57.0 | 3591 | 0.6776 |
|
105 |
+
| 0.5526 | 58.0 | 3654 | 0.6440 |
|
106 |
+
| 0.556 | 59.0 | 3717 | 0.6682 |
|
107 |
+
| 0.5476 | 60.0 | 3780 | 0.6254 |
|
108 |
+
| 0.536 | 61.0 | 3843 | 0.6239 |
|
109 |
+
| 0.526 | 62.0 | 3906 | 0.6606 |
|
110 |
+
| 0.532 | 63.0 | 3969 | 0.6565 |
|
111 |
+
| 0.5189 | 64.0 | 4032 | 0.6586 |
|
112 |
+
| 0.5075 | 65.0 | 4095 | 0.6286 |
|
113 |
+
| 0.5131 | 66.0 | 4158 | 0.6646 |
|
114 |
+
| 0.498 | 67.0 | 4221 | 0.6486 |
|
115 |
+
| 0.4979 | 68.0 | 4284 | 0.6313 |
|
116 |
+
| 0.4885 | 69.0 | 4347 | 0.6419 |
|
117 |
+
| 0.4875 | 70.0 | 4410 | 0.6313 |
|
118 |
+
| 0.4904 | 71.0 | 4473 | 0.6602 |
|
119 |
+
| 0.4712 | 72.0 | 4536 | 0.6200 |
|
120 |
+
| 0.4798 | 73.0 | 4599 | 0.5912 |
|
121 |
+
| 0.4802 | 74.0 | 4662 | 0.6001 |
|
122 |
+
| 0.4704 | 75.0 | 4725 | 0.6303 |
|
123 |
+
| 0.4709 | 76.0 | 4788 | 0.5871 |
|
124 |
+
| 0.465 | 77.0 | 4851 | 0.6344 |
|
125 |
+
| 0.4651 | 78.0 | 4914 | 0.6030 |
|
126 |
+
| 0.4501 | 79.0 | 4977 | 0.5998 |
|
127 |
+
| 0.4584 | 80.0 | 5040 | 0.5926 |
|
128 |
+
| 0.4651 | 81.0 | 5103 | 0.6134 |
|
129 |
+
| 0.438 | 82.0 | 5166 | 0.6254 |
|
130 |
+
| 0.448 | 83.0 | 5229 | 0.6260 |
|
131 |
+
| 0.4295 | 84.0 | 5292 | 0.5866 |
|
132 |
+
| 0.434 | 85.0 | 5355 | 0.5740 |
|
133 |
+
| 0.4261 | 86.0 | 5418 | 0.5691 |
|
134 |
+
| 0.4312 | 87.0 | 5481 | 0.6243 |
|
135 |
+
| 0.4289 | 88.0 | 5544 | 0.5781 |
|
136 |
+
| 0.4255 | 89.0 | 5607 | 0.6226 |
|
137 |
+
| 0.4254 | 90.0 | 5670 | 0.5538 |
|
138 |
+
| 0.4231 | 91.0 | 5733 | 0.5874 |
|
139 |
+
| 0.4107 | 92.0 | 5796 | 0.6054 |
|
140 |
+
| 0.4082 | 93.0 | 5859 | 0.5898 |
|
141 |
+
| 0.4144 | 94.0 | 5922 | 0.5826 |
|
142 |
+
| 0.4225 | 95.0 | 5985 | 0.5501 |
|
143 |
+
| 0.3964 | 96.0 | 6048 | 0.5886 |
|
144 |
+
| 0.3972 | 97.0 | 6111 | 0.5831 |
|
145 |
+
| 0.4165 | 98.0 | 6174 | 0.5164 |
|
146 |
+
| 0.4024 | 99.0 | 6237 | 0.5714 |
|
147 |
+
| 0.4013 | 100.0 | 6300 | 0.5734 |
|
148 |
+
| 0.3933 | 101.0 | 6363 | 0.5727 |
|
149 |
+
| 0.3821 | 102.0 | 6426 | 0.5985 |
|
150 |
+
| 0.3904 | 103.0 | 6489 | 0.5571 |
|
151 |
+
| 0.3965 | 104.0 | 6552 | 0.5837 |
|
152 |
+
| 0.3789 | 105.0 | 6615 | 0.5989 |
|
153 |
+
| 0.3733 | 106.0 | 6678 | 0.5405 |
|
154 |
+
| 0.3907 | 107.0 | 6741 | 0.6059 |
|
155 |
+
| 0.3794 | 108.0 | 6804 | 0.5602 |
|
156 |
+
| 0.3689 | 109.0 | 6867 | 0.5590 |
|
157 |
+
| 0.3603 | 110.0 | 6930 | 0.5886 |
|
158 |
+
| 0.3747 | 111.0 | 6993 | 0.5294 |
|
159 |
+
| 0.3667 | 112.0 | 7056 | 0.5759 |
|
160 |
+
| 0.3754 | 113.0 | 7119 | 0.5821 |
|
161 |
+
| 0.3676 | 114.0 | 7182 | 0.5653 |
|
162 |
+
| 0.3524 | 115.0 | 7245 | 0.5537 |
|
163 |
+
| 0.3624 | 116.0 | 7308 | 0.5523 |
|
164 |
+
| 0.3527 | 117.0 | 7371 | 0.5799 |
|
165 |
+
| 0.3588 | 118.0 | 7434 | 0.6346 |
|
166 |
+
| 0.3539 | 119.0 | 7497 | 0.5116 |
|
167 |
+
| 0.3553 | 120.0 | 7560 | 0.5716 |
|
168 |
+
| 0.3483 | 121.0 | 7623 | 0.5721 |
|
169 |
+
| 0.3625 | 122.0 | 7686 | 0.5393 |
|
170 |
+
| 0.3354 | 123.0 | 7749 | 0.5800 |
|
171 |
+
| 0.3392 | 124.0 | 7812 | 0.5389 |
|
172 |
+
| 0.344 | 125.0 | 7875 | 0.5455 |
|
173 |
+
| 0.3451 | 126.0 | 7938 | 0.5428 |
|
174 |
+
| 0.3374 | 127.0 | 8001 | 0.5580 |
|
175 |
+
| 0.3428 | 128.0 | 8064 | 0.5339 |
|
176 |
+
| 0.3386 | 129.0 | 8127 | 0.5447 |
|
177 |
+
| 0.3318 | 130.0 | 8190 | 0.5738 |
|
178 |
+
| 0.3388 | 131.0 | 8253 | 0.5667 |
|
179 |
+
| 0.3335 | 132.0 | 8316 | 0.5407 |
|
180 |
+
| 0.3383 | 133.0 | 8379 | 0.5679 |
|
181 |
+
| 0.3299 | 134.0 | 8442 | 0.5846 |
|
182 |
+
| 0.327 | 135.0 | 8505 | 0.5511 |
|
183 |
+
| 0.3354 | 136.0 | 8568 | 0.5649 |
|
184 |
+
| 0.32 | 137.0 | 8631 | 0.5358 |
|
185 |
+
| 0.3265 | 138.0 | 8694 | 0.5528 |
|
186 |
+
| 0.319 | 139.0 | 8757 | 0.5926 |
|
187 |
+
| 0.3304 | 140.0 | 8820 | 0.5531 |
|
188 |
+
| 0.3191 | 141.0 | 8883 | 0.5379 |
|
189 |
+
| 0.3298 | 142.0 | 8946 | 0.5468 |
|
190 |
+
| 0.3134 | 143.0 | 9009 | 0.5623 |
|
191 |
+
| 0.3186 | 144.0 | 9072 | 0.5162 |
|
192 |
+
| 0.3179 | 145.0 | 9135 | 0.5570 |
|
193 |
+
| 0.3175 | 146.0 | 9198 | 0.5379 |
|
194 |
+
| 0.3051 | 147.0 | 9261 | 0.5437 |
|
195 |
+
| 0.312 | 148.0 | 9324 | 0.5301 |
|
196 |
+
| 0.3093 | 149.0 | 9387 | 0.5393 |
|
197 |
+
| 0.3227 | 150.0 | 9450 | 0.5531 |
|
198 |
+
| 0.3125 | 151.0 | 9513 | 0.5794 |
|
199 |
+
| 0.3162 | 152.0 | 9576 | 0.5677 |
|
200 |
+
| 0.3006 | 153.0 | 9639 | 0.5668 |
|
201 |
+
| 0.3011 | 154.0 | 9702 | 0.5797 |
|
202 |
+
| 0.3208 | 155.0 | 9765 | 0.5450 |
|
203 |
+
| 0.3048 | 156.0 | 9828 | 0.5465 |
|
204 |
+
| 0.3092 | 157.0 | 9891 | 0.5358 |
|
205 |
+
| 0.3125 | 158.0 | 9954 | 0.5043 |
|
206 |
+
| 0.3083 | 159.0 | 10017 | 0.5321 |
|
207 |
+
| 0.3 | 160.0 | 10080 | 0.5526 |
|
208 |
+
| 0.2968 | 161.0 | 10143 | 0.5324 |
|
209 |
+
| 0.3068 | 162.0 | 10206 | 0.5471 |
|
210 |
+
| 0.3129 | 163.0 | 10269 | 0.5575 |
|
211 |
+
| 0.3061 | 164.0 | 10332 | 0.5796 |
|
212 |
+
| 0.2943 | 165.0 | 10395 | 0.5544 |
|
213 |
+
| 0.2967 | 166.0 | 10458 | 0.5422 |
|
214 |
+
| 0.2959 | 167.0 | 10521 | 0.5149 |
|
215 |
+
| 0.2987 | 168.0 | 10584 | 0.5685 |
|
216 |
+
| 0.3045 | 169.0 | 10647 | 0.5176 |
|
217 |
+
| 0.2975 | 170.0 | 10710 | 0.5044 |
|
218 |
+
| 0.2948 | 171.0 | 10773 | 0.5264 |
|
219 |
+
| 0.3 | 172.0 | 10836 | 0.5174 |
|
220 |
+
| 0.2967 | 173.0 | 10899 | 0.5658 |
|
221 |
+
| 0.2873 | 174.0 | 10962 | 0.4988 |
|
222 |
+
| 0.2939 | 175.0 | 11025 | 0.5512 |
|
223 |
+
| 0.2954 | 176.0 | 11088 | 0.5139 |
|
224 |
+
| 0.301 | 177.0 | 11151 | 0.6007 |
|
225 |
+
| 0.2948 | 178.0 | 11214 | 0.5167 |
|
226 |
+
| 0.2898 | 179.0 | 11277 | 0.5443 |
|
227 |
+
| 0.2869 | 180.0 | 11340 | 0.5544 |
|
228 |
+
| 0.2973 | 181.0 | 11403 | 0.5644 |
|
229 |
+
| 0.2985 | 182.0 | 11466 | 0.5153 |
|
230 |
+
| 0.2904 | 183.0 | 11529 | 0.5561 |
|
231 |
+
| 0.2872 | 184.0 | 11592 | 0.5610 |
|
232 |
+
| 0.2894 | 185.0 | 11655 | 0.5511 |
|
233 |
+
| 0.297 | 186.0 | 11718 | 0.5408 |
|
234 |
+
| 0.2904 | 187.0 | 11781 | 0.5574 |
|
235 |
+
| 0.2818 | 188.0 | 11844 | 0.5182 |
|
236 |
+
| 0.2873 | 189.0 | 11907 | 0.5425 |
|
237 |
+
| 0.2973 | 190.0 | 11970 | 0.5198 |
|
238 |
+
| 0.2913 | 191.0 | 12033 | 0.5119 |
|
239 |
+
| 0.2931 | 192.0 | 12096 | 0.5585 |
|
240 |
+
| 0.2859 | 193.0 | 12159 | 0.5368 |
|
241 |
+
| 0.2853 | 194.0 | 12222 | 0.5274 |
|
242 |
+
| 0.294 | 195.0 | 12285 | 0.5685 |
|
243 |
+
| 0.2885 | 196.0 | 12348 | 0.5581 |
|
244 |
+
| 0.295 | 197.0 | 12411 | 0.4987 |
|
245 |
+
| 0.2807 | 198.0 | 12474 | 0.5168 |
|
246 |
+
| 0.289 | 199.0 | 12537 | 0.5284 |
|
247 |
+
| 0.2893 | 200.0 | 12600 | 0.5420 |
|
248 |
+
|
249 |
+
|
250 |
+
### Framework versions
|
251 |
+
|
252 |
+
- Transformers 4.24.0
|
253 |
+
- Pytorch 1.12.1+cu113
|
254 |
+
- Datasets 2.6.1
|
255 |
+
- Tokenizers 0.13.2
|