|
{ |
|
"best_metric": null, |
|
"best_model_checkpoint": null, |
|
"epoch": 3.0, |
|
"global_step": 690, |
|
"is_hyper_param_search": false, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.8431372549019608, |
|
"eval_combined_score": 0.8656245715069245, |
|
"eval_f1": 0.8881118881118882, |
|
"eval_loss": 0.3667730391025543, |
|
"eval_runtime": 0.621, |
|
"eval_samples_per_second": 657.045, |
|
"eval_steps_per_second": 41.87, |
|
"step": 230 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.8578431372549019, |
|
"eval_combined_score": 0.8797690262545697, |
|
"eval_f1": 0.9016949152542373, |
|
"eval_loss": 0.375055193901062, |
|
"eval_runtime": 0.6266, |
|
"eval_samples_per_second": 651.108, |
|
"eval_steps_per_second": 41.492, |
|
"step": 460 |
|
}, |
|
{ |
|
"epoch": 2.17, |
|
"learning_rate": 1.3768115942028985e-05, |
|
"loss": 0.4264, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 3.0, |
|
"eval_accuracy": 0.8602941176470589, |
|
"eval_combined_score": 0.8817599620493359, |
|
"eval_f1": 0.9032258064516129, |
|
"eval_loss": 0.5152415037155151, |
|
"eval_runtime": 0.5833, |
|
"eval_samples_per_second": 699.514, |
|
"eval_steps_per_second": 44.577, |
|
"step": 690 |
|
}, |
|
{ |
|
"epoch": 3.0, |
|
"step": 690, |
|
"total_flos": 723818515529728.0, |
|
"train_loss": 0.36320947287739186, |
|
"train_runtime": 105.4434, |
|
"train_samples_per_second": 104.359, |
|
"train_steps_per_second": 6.544 |
|
} |
|
], |
|
"max_steps": 690, |
|
"num_train_epochs": 3, |
|
"total_flos": 723818515529728.0, |
|
"trial_name": null, |
|
"trial_params": null |
|
} |
|
|