VPG playing MountainCarContinuous-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
b638440
from typing import Optional, Sequence, Type | |
import gym | |
import torch | |
import torch.nn as nn | |
from rl_algo_impls.shared.encoder.cnn import FlattenedCnnEncoder | |
from rl_algo_impls.shared.module.utils import layer_init | |
class ResidualBlock(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
activation: Type[nn.Module] = nn.ReLU, | |
init_layers_orthogonal: bool = False, | |
) -> None: | |
super().__init__() | |
self.residual = nn.Sequential( | |
activation(), | |
layer_init( | |
nn.Conv2d(channels, channels, 3, padding=1), init_layers_orthogonal | |
), | |
activation(), | |
layer_init( | |
nn.Conv2d(channels, channels, 3, padding=1), init_layers_orthogonal | |
), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x + self.residual(x) | |
class ConvSequence(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
activation: Type[nn.Module] = nn.ReLU, | |
init_layers_orthogonal: bool = False, | |
) -> None: | |
super().__init__() | |
self.seq = nn.Sequential( | |
layer_init( | |
nn.Conv2d(in_channels, out_channels, 3, padding=1), | |
init_layers_orthogonal, | |
), | |
nn.MaxPool2d(3, stride=2, padding=1), | |
ResidualBlock(out_channels, activation, init_layers_orthogonal), | |
ResidualBlock(out_channels, activation, init_layers_orthogonal), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.seq(x) | |
class ImpalaCnn(FlattenedCnnEncoder): | |
""" | |
IMPALA-style CNN architecture | |
""" | |
def __init__( | |
self, | |
obs_space: gym.Space, | |
activation: Type[nn.Module], | |
cnn_init_layers_orthogonal: Optional[bool], | |
linear_init_layers_orthogonal: bool, | |
cnn_flatten_dim: int, | |
impala_channels: Sequence[int] = (16, 32, 32), | |
**kwargs, | |
) -> None: | |
if cnn_init_layers_orthogonal is None: | |
cnn_init_layers_orthogonal = False | |
in_channels = obs_space.shape[0] # type: ignore | |
sequences = [] | |
for out_channels in impala_channels: | |
sequences.append( | |
ConvSequence( | |
in_channels, out_channels, activation, cnn_init_layers_orthogonal | |
) | |
) | |
in_channels = out_channels | |
sequences.append(activation()) | |
cnn = nn.Sequential(*sequences) | |
super().__init__( | |
obs_space, | |
activation, | |
linear_init_layers_orthogonal, | |
cnn_flatten_dim, | |
cnn, | |
**kwargs, | |
) | |