VPG playing MountainCarContinuous-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
b638440
from copy import deepcopy | |
import optuna | |
from rl_algo_impls.runner.config import Config, EnvHyperparams, Hyperparams | |
from rl_algo_impls.shared.policy.optimize_on_policy import sample_on_policy_hyperparams | |
from rl_algo_impls.shared.vec_env import make_eval_env | |
from rl_algo_impls.tuning.optimize_env import sample_env_hyperparams | |
def sample_params( | |
trial: optuna.Trial, | |
base_hyperparams: Hyperparams, | |
base_config: Config, | |
) -> Hyperparams: | |
hyperparams = deepcopy(base_hyperparams) | |
base_env_hyperparams = EnvHyperparams(**hyperparams.env_hyperparams) | |
env = make_eval_env( | |
base_config, | |
base_env_hyperparams, | |
override_hparams={"n_envs": 1}, | |
) | |
# env_hyperparams | |
env_hyperparams = sample_env_hyperparams(trial, hyperparams.env_hyperparams, env) | |
# policy_hyperparams | |
policy_hyperparams = sample_on_policy_hyperparams( | |
trial, hyperparams.policy_hyperparams, env | |
) | |
# algo_hyperparams | |
algo_hyperparams = hyperparams.algo_hyperparams | |
learning_rate = trial.suggest_float("learning_rate", 1e-5, 2e-3, log=True) | |
learning_rate_decay = trial.suggest_categorical( | |
"learning_rate_decay", ["none", "linear"] | |
) | |
n_steps_exp = trial.suggest_int("n_steps_exp", 1, 10) | |
n_steps = 2**n_steps_exp | |
trial.set_user_attr("n_steps", n_steps) | |
gamma = 1.0 - trial.suggest_float("gamma_om", 1e-4, 1e-1, log=True) | |
trial.set_user_attr("gamma", gamma) | |
gae_lambda = 1 - trial.suggest_float("gae_lambda_om", 1e-4, 1e-1) | |
trial.set_user_attr("gae_lambda", gae_lambda) | |
ent_coef = trial.suggest_float("ent_coef", 1e-8, 2.5e-2, log=True) | |
ent_coef_decay = trial.suggest_categorical("ent_coef_decay", ["none", "linear"]) | |
vf_coef = trial.suggest_float("vf_coef", 0.1, 0.7) | |
max_grad_norm = trial.suggest_float("max_grad_norm", 1e-1, 1e1, log=True) | |
use_rms_prop = trial.suggest_categorical("use_rms_prop", [True, False]) | |
normalize_advantage = trial.suggest_categorical( | |
"normalize_advantage", [True, False] | |
) | |
algo_hyperparams.update( | |
{ | |
"learning_rate": learning_rate, | |
"learning_rate_decay": learning_rate_decay, | |
"n_steps": n_steps, | |
"gamma": gamma, | |
"gae_lambda": gae_lambda, | |
"ent_coef": ent_coef, | |
"ent_coef_decay": ent_coef_decay, | |
"vf_coef": vf_coef, | |
"max_grad_norm": max_grad_norm, | |
"use_rms_prop": use_rms_prop, | |
"normalize_advantage": normalize_advantage, | |
} | |
) | |
if policy_hyperparams.get("use_sde", False): | |
sde_sample_freq = 2 ** trial.suggest_int("sde_sample_freq_exp", 0, n_steps_exp) | |
trial.set_user_attr("sde_sample_freq", sde_sample_freq) | |
algo_hyperparams["sde_sample_freq"] = sde_sample_freq | |
elif "sde_sample_freq" in algo_hyperparams: | |
del algo_hyperparams["sde_sample_freq"] | |
env.close() | |
return hyperparams | |