sgoodfriend's picture
VPG playing MountainCarContinuous-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/2067e21d62fff5db60168687e7d9e89019a8bfc0
8bf4dee
raw
history blame
1.67 kB
import numpy as np
import os
import torch
from typing import Optional, Sequence, TypeVar
from rl_algo_impls.dqn.q_net import QNetwork
from rl_algo_impls.shared.policy.policy import Policy
from rl_algo_impls.wrappers.vectorable_wrapper import (
VecEnv,
VecEnvObs,
single_observation_space,
single_action_space,
)
DQNPolicySelf = TypeVar("DQNPolicySelf", bound="DQNPolicy")
class DQNPolicy(Policy):
def __init__(
self,
env: VecEnv,
hidden_sizes: Sequence[int] = [],
cnn_feature_dim: int = 512,
cnn_style: str = "nature",
cnn_layers_init_orthogonal: Optional[bool] = None,
impala_channels: Sequence[int] = (16, 32, 32),
**kwargs,
) -> None:
super().__init__(env, **kwargs)
self.q_net = QNetwork(
single_observation_space(env),
single_action_space(env),
hidden_sizes,
cnn_feature_dim=cnn_feature_dim,
cnn_style=cnn_style,
cnn_layers_init_orthogonal=cnn_layers_init_orthogonal,
impala_channels=impala_channels,
)
def act(
self, obs: VecEnvObs, eps: float = 0, deterministic: bool = True
) -> np.ndarray:
assert eps == 0 if deterministic else eps >= 0
if not deterministic and np.random.random() < eps:
return np.array(
[
single_action_space(self.env).sample()
for _ in range(self.env.num_envs)
]
)
else:
o = self._as_tensor(obs)
with torch.no_grad():
return self.q_net(o).argmax(axis=1).cpu().numpy()