sgoodfriend's picture
PPO playing procgen-coinrun-easy from https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a
a9b202e
import os
from datetime import datetime
from dataclasses import dataclass
from typing import Any, Dict, NamedTuple, Optional, TypedDict, Union
@dataclass
class RunArgs:
algo: str
env: str
seed: Optional[int] = None
use_deterministic_algorithms: bool = True
class EnvHyperparams(NamedTuple):
is_procgen: bool = False
n_envs: int = 1
frame_stack: int = 1
make_kwargs: Optional[Dict[str, Any]] = None
no_reward_timeout_steps: Optional[int] = None
no_reward_fire_steps: Optional[int] = None
vec_env_class: str = "dummy"
normalize: bool = False
normalize_kwargs: Optional[Dict[str, Any]] = None
rolling_length: int = 100
train_record_video: bool = False
video_step_interval: Union[int, float] = 1_000_000
initial_steps_to_truncate: Optional[int] = None
class Hyperparams(TypedDict, total=False):
device: str
n_timesteps: Union[int, float]
env_hyperparams: Dict[str, Any]
policy_hyperparams: Dict[str, Any]
algo_hyperparams: Dict[str, Any]
eval_params: Dict[str, Any]
@dataclass
class Config:
args: RunArgs
hyperparams: Hyperparams
root_dir: str
run_id: str = datetime.now().isoformat()
def seed(self, training: bool = True) -> Optional[int]:
seed = self.args.seed
if training or seed is None:
return seed
return seed + self.env_hyperparams.get("n_envs", 1)
@property
def device(self) -> str:
return self.hyperparams.get("device", "auto")
@property
def n_timesteps(self) -> int:
return int(self.hyperparams.get("n_timesteps", 100_000))
@property
def env_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.get("env_hyperparams", {})
@property
def policy_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.get("policy_hyperparams", {})
@property
def algo_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.get("algo_hyperparams", {})
@property
def eval_params(self) -> Dict[str, Any]:
return self.hyperparams.get("eval_params", {})
@property
def algo(self) -> str:
return self.args.algo
@property
def env_id(self) -> str:
return self.hyperparams.get("env_id") or self.args.env
def model_name(self, include_seed: bool = True) -> str:
# Use arg env name instead of environment name
parts = [self.algo, self.args.env]
if include_seed and self.args.seed is not None:
parts.append(f"S{self.args.seed}")
# Assume that the custom arg name already has the necessary information
if not self.hyperparams.get("env_id"):
make_kwargs = self.env_hyperparams.get("make_kwargs", {})
if make_kwargs:
for k, v in make_kwargs.items():
if type(v) == bool and v:
parts.append(k)
elif type(v) == int and v:
parts.append(f"{k}{v}")
else:
parts.append(str(v))
return "-".join(parts)
@property
def run_name(self) -> str:
parts = [self.model_name(), self.run_id]
return "-".join(parts)
@property
def saved_models_dir(self) -> str:
return os.path.join(self.root_dir, "saved_models")
@property
def downloaded_models_dir(self) -> str:
return os.path.join(self.root_dir, "downloaded_models")
def model_dir_name(
self,
best: bool = False,
extension: str = "",
) -> str:
return self.model_name() + ("-best" if best else "") + extension
def model_dir_path(self, best: bool = False, downloaded: bool = False) -> str:
return os.path.join(
self.saved_models_dir if not downloaded else self.downloaded_models_dir,
self.model_dir_name(best=best),
)
@property
def runs_dir(self) -> str:
return os.path.join(self.root_dir, "runs")
@property
def tensorboard_summary_path(self) -> str:
return os.path.join(self.runs_dir, self.run_name)
@property
def logs_path(self) -> str:
return os.path.join(self.runs_dir, f"log.yml")
@property
def videos_dir(self) -> str:
return os.path.join(self.root_dir, "videos")
@property
def video_prefix(self) -> str:
return os.path.join(self.videos_dir, self.model_name())
@property
def best_videos_dir(self) -> str:
return os.path.join(self.videos_dir, f"{self.model_name()}-best")