sgoodfriend's picture
PPO playing impala-PongNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/e47a44c4d891f48885af0b1605b30d19fc67b5af
be9c115
raw
history blame contribute delete
No virus
10.5 kB
import numpy as np
import torch
import torch.nn as nn
from dataclasses import asdict, dataclass, field
from torch.optim import Adam
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs
from torch.utils.tensorboard.writer import SummaryWriter
from typing import List, Optional, Sequence, NamedTuple, TypeVar
from shared.algorithm import Algorithm
from shared.callbacks.callback import Callback
from shared.gae import compute_advantage, compute_rtg_and_advantage, RtgAdvantage
from shared.policy.on_policy import ActorCritic
from shared.schedule import constant_schedule, linear_schedule
from shared.trajectory import Trajectory, TrajectoryAccumulator
@dataclass
class PPOTrajectory(Trajectory):
logp_a: List[float] = field(default_factory=list)
def add(
self,
obs: np.ndarray,
act: np.ndarray,
next_obs: np.ndarray,
rew: float,
terminated: bool,
v: float,
logp_a: float,
):
super().add(obs, act, next_obs, rew, terminated, v)
self.logp_a.append(logp_a)
class PPOTrajectoryAccumulator(TrajectoryAccumulator):
def __init__(self, num_envs: int) -> None:
super().__init__(num_envs, PPOTrajectory)
def step(
self,
obs: VecEnvObs,
action: np.ndarray,
next_obs: VecEnvObs,
reward: np.ndarray,
done: np.ndarray,
val: np.ndarray,
logp_a: np.ndarray,
) -> None:
super().step(obs, action, next_obs, reward, done, val, logp_a)
class TrainStepStats(NamedTuple):
loss: float
pi_loss: float
v_loss: float
entropy_loss: float
approx_kl: float
clipped_frac: float
@dataclass
class TrainStats:
loss: float
pi_loss: float
v_loss: float
entropy_loss: float
approx_kl: float
clipped_frac: float
def __init__(self, step_stats: List[TrainStepStats]) -> None:
self.loss = np.mean([s.loss for s in step_stats]).item()
self.pi_loss = np.mean([s.pi_loss for s in step_stats]).item()
self.v_loss = np.mean([s.v_loss for s in step_stats]).item()
self.entropy_loss = np.mean([s.entropy_loss for s in step_stats]).item()
self.approx_kl = np.mean([s.approx_kl for s in step_stats]).item()
self.clipped_frac = np.mean([s.clipped_frac for s in step_stats]).item()
def write_to_tensorboard(self, tb_writer: SummaryWriter, global_step: int) -> None:
tb_writer.add_scalars("losses", asdict(self), global_step=global_step)
def __repr__(self) -> str:
return " | ".join(
[
f"Loss: {round(self.loss, 2)}",
f"Pi L: {round(self.pi_loss, 2)}",
f"V L: {round(self.v_loss, 2)}",
f"E L: {round(self.entropy_loss, 2)}",
f"Apx KL Div: {round(self.approx_kl, 2)}",
f"Clip Frac: {round(self.clipped_frac, 2)}",
]
)
PPOSelf = TypeVar("PPOSelf", bound="PPO")
class PPO(Algorithm):
def __init__(
self,
policy: ActorCritic,
env: VecEnv,
device: torch.device,
tb_writer: SummaryWriter,
learning_rate: float = 3e-4,
learning_rate_decay: str = "none",
n_steps: int = 2048,
batch_size: int = 64,
n_epochs: int = 10,
gamma: float = 0.99,
gae_lambda: float = 0.95,
clip_range: float = 0.2,
clip_range_decay: str = "none",
clip_range_vf: Optional[float] = None,
clip_range_vf_decay: str = "none",
normalize_advantage: bool = True,
ent_coef: float = 0.0,
ent_coef_decay: str = "none",
vf_coef: float = 0.5,
max_grad_norm: float = 0.5,
update_rtg_between_epochs: bool = False,
sde_sample_freq: int = -1,
) -> None:
super().__init__(policy, env, device, tb_writer)
self.policy = policy
self.gamma = gamma
self.gae_lambda = gae_lambda
self.optimizer = Adam(self.policy.parameters(), lr=learning_rate)
self.lr_schedule = (
linear_schedule(learning_rate, 0)
if learning_rate_decay == "linear"
else constant_schedule(learning_rate)
)
self.max_grad_norm = max_grad_norm
self.clip_range_schedule = (
linear_schedule(clip_range, 0)
if clip_range_decay == "linear"
else constant_schedule(clip_range)
)
self.clip_range_vf_schedule = None
if clip_range_vf:
self.clip_range_vf_schedule = (
linear_schedule(clip_range_vf, 0)
if clip_range_vf_decay == "linear"
else constant_schedule(clip_range_vf)
)
self.normalize_advantage = normalize_advantage
self.ent_coef_schedule = (
linear_schedule(ent_coef, 0)
if ent_coef_decay == "linear"
else constant_schedule(ent_coef)
)
self.vf_coef = vf_coef
self.n_steps = n_steps
self.batch_size = batch_size
self.n_epochs = n_epochs
self.sde_sample_freq = sde_sample_freq
self.update_rtg_between_epochs = update_rtg_between_epochs
def learn(
self: PPOSelf,
total_timesteps: int,
callback: Optional[Callback] = None,
) -> PPOSelf:
obs = self.env.reset()
ts_elapsed = 0
while ts_elapsed < total_timesteps:
accumulator = self._collect_trajectories(obs)
progress = ts_elapsed / total_timesteps
train_stats = self.train(accumulator.all_trajectories, progress)
rollout_steps = self.n_steps * self.env.num_envs
ts_elapsed += rollout_steps
train_stats.write_to_tensorboard(self.tb_writer, ts_elapsed)
if callback:
callback.on_step(timesteps_elapsed=rollout_steps)
return self
def _collect_trajectories(self, obs: VecEnvObs) -> PPOTrajectoryAccumulator:
self.policy.eval()
accumulator = PPOTrajectoryAccumulator(self.env.num_envs)
self.policy.reset_noise()
for i in range(self.n_steps):
if self.sde_sample_freq > 0 and i > 0 and i % self.sde_sample_freq == 0:
self.policy.reset_noise()
action, value, logp_a, clamped_action = self.policy.step(obs)
next_obs, reward, done, _ = self.env.step(clamped_action)
accumulator.step(obs, action, next_obs, reward, done, value, logp_a)
obs = next_obs
return accumulator
def train(self, trajectories: List[PPOTrajectory], progress: float) -> TrainStats:
self.policy.train()
learning_rate = self.lr_schedule(progress)
self.optimizer.param_groups[0]["lr"] = learning_rate
pi_clip = self.clip_range_schedule(progress)
v_clip = (
self.clip_range_vf_schedule(progress)
if self.clip_range_vf_schedule
else None
)
ent_coef = self.ent_coef_schedule(progress)
obs = torch.as_tensor(
np.concatenate([np.array(t.obs) for t in trajectories]), device=self.device
)
act = torch.as_tensor(
np.concatenate([np.array(t.act) for t in trajectories]), device=self.device
)
rtg, adv = compute_rtg_and_advantage(
trajectories, self.policy, self.gamma, self.gae_lambda, self.device
)
orig_v = torch.as_tensor(
np.concatenate([np.array(t.v) for t in trajectories]), device=self.device
)
orig_logp_a = torch.as_tensor(
np.concatenate([np.array(t.logp_a) for t in trajectories]),
device=self.device,
)
step_stats = []
for _ in range(self.n_epochs):
if self.update_rtg_between_epochs:
rtg, adv = compute_rtg_and_advantage(
trajectories, self.policy, self.gamma, self.gae_lambda, self.device
)
else:
adv = compute_advantage(
trajectories, self.policy, self.gamma, self.gae_lambda, self.device
)
idxs = torch.randperm(len(obs))
for i in range(0, len(obs), self.batch_size):
mb_idxs = idxs[i : i + self.batch_size]
mb_adv = adv[mb_idxs]
if self.normalize_advantage:
mb_adv = (mb_adv - mb_adv.mean(-1)) / (mb_adv.std(-1) + 1e-8)
step_stats.append(
self._train_step(
pi_clip,
v_clip,
ent_coef,
obs[mb_idxs],
act[mb_idxs],
rtg[mb_idxs],
mb_adv,
orig_v[mb_idxs],
orig_logp_a[mb_idxs],
)
)
return TrainStats(step_stats)
def _train_step(
self,
pi_clip: float,
v_clip: Optional[float],
ent_coef: float,
obs: torch.Tensor,
act: torch.Tensor,
rtg: torch.Tensor,
adv: torch.Tensor,
orig_v: torch.Tensor,
orig_logp_a: torch.Tensor,
) -> TrainStepStats:
logp_a, entropy, v = self.policy(obs, act)
logratio = logp_a - orig_logp_a
ratio = torch.exp(logratio)
clip_ratio = torch.clamp(ratio, min=1 - pi_clip, max=1 + pi_clip)
pi_loss = torch.maximum(-ratio * adv, -clip_ratio * adv).mean()
v_loss = (v - rtg).pow(2)
if v_clip:
v_clipped = (torch.clamp(v, orig_v - v_clip, orig_v + v_clip) - rtg).pow(2)
v_loss = torch.maximum(v_loss, v_clipped)
v_loss = v_loss.mean()
entropy_loss = entropy.mean()
loss = pi_loss - ent_coef * entropy_loss + self.vf_coef * v_loss
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.optimizer.step()
with torch.no_grad():
approx_kl = ((ratio - 1) - logratio).mean().cpu().numpy().item()
clipped_frac = (
((ratio - 1).abs() > pi_clip).float().mean().cpu().numpy().item()
)
return TrainStepStats(
loss.item(),
pi_loss.item(),
v_loss.item(),
entropy_loss.item(),
approx_kl,
clipped_frac,
)