sgoodfriend commited on
Commit
f020fdf
1 Parent(s): 23b4f0e

Unit 1 of Hugging Face Deep RL Course

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 288.19 +/- 18.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f040f5b7700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f040f5b7790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f040f5b7820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f040f5b78b0>", "_build": "<function ActorCriticPolicy._build at 0x7f040f5b7940>", "forward": "<function ActorCriticPolicy.forward at 0x7f040f5b79d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f040f5b7a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f040f5b7af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f040f5b7b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f040f5b7c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f040f5b7ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f040f5ba060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670620844694340586, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpJGbvDdU26vAdKO/0hs7mEdw07BrldugAAgD8AAIA/2pnbva+SJj+dmeA8tKPsvuHv67wlqxM9AAAAAAAAAAAa/yA+aiSWPvn+Nr60362+HjOuPL6LBr0AAAAAAAAAAM26O71680I+RL4jPcMeY7632WG8dhSWvAAAAAAAAAAAgFIVvURovD+ZCjC+hsKavX4Bob3JNES+AAAAAAAAAAAARBk8HGcvPQdYlz6Z9US+WYuEPtJ5+r0AAAAAAAAAAGZE2LzpMRO8XjEevhu7Mr1TvoY9HkFZPgAAAAAAAIA/GmF4Pfckpz4PzQW+4ka1vm2Z0buN7G68AAAAAAAAAACaYce7D3YCvHV01r1BUMe8f3ZIPAwEM74AAIA/AACAP7NRLT0pcDq6vUWouQt9UrYuG5Y3nS7FOAAAgD8AAIA/zX56vMPxf7oi6pM7yQOOPHalwrrw23Y9AACAPwAAgD9gth++hmCaP9QkxL7hcUK/4RGDvrqgNb0AAAAAAAAAAMAsRz6s5Pg+EhiOvnrH3b75PHE9bg3/vQAAAAAAAAAAzRuRvGMRAD+hKDS9EUzavm4zcbr3Kgo8AAAAAAAAAAAa+0g9sX+cPZ0bbL5Lg42+pofbvaK5970AAAAAAAAAAJq7Ezw9yVS7HnkXvH/OgDwHV4w8Q4xevQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9DP1usVybkCUhpRSlIwBbJRLv4wBdJRHQJnW7V7Qb+91fZQoaAZoCWgPQwjMtP0r66VxQJSGlFKUaBVLyGgWR0CZ1xAbhm5EdX2UKGgGaAloD0MIWpwxzAmJcECUhpRSlGgVS+poFkdAmddBm5DqnnV9lChoBmgJaA9DCJOLMbAOd3BAlIaUUpRoFUv8aBZHQJnXgneBQN11fZQoaAZoCWgPQwh/oUeM3iRxQJSGlFKUaBVL9GgWR0CZ2OPgNwzddX2UKGgGaAloD0MImrZ/ZeWtckCUhpRSlGgVS8NoFkdAmdj1qN6w+3V9lChoBmgJaA9DCL1SliFOSnNAlIaUUpRoFUvFaBZHQJnZH1ZkkKN1fZQoaAZoCWgPQwjyfAbUW7dxQJSGlFKUaBVLvmgWR0CZ2WArhBJJdX2UKGgGaAloD0MI7L/OTVtocECUhpRSlGgVS+toFkdAmdncV58jRnV9lChoBmgJaA9DCF6+9WG943FAlIaUUpRoFUvqaBZHQJnahdC3PRl1fZQoaAZoCWgPQwjVljrIa5lxQJSGlFKUaBVLz2gWR0CZ2ue5WilBdX2UKGgGaAloD0MIsKpefic1c0CUhpRSlGgVS71oFkdAmdsVCgK4QXV9lChoBmgJaA9DCKUw73Fm03FAlIaUUpRoFUvsaBZHQJnbMpjMFEB1fZQoaAZoCWgPQwi8IvjfCnJyQJSGlFKUaBVL1mgWR0CZ2zJEH+qBdX2UKGgGaAloD0MIeJeL+M6ybUCUhpRSlGgVS8hoFkdAmduP3JxNqXV9lChoBmgJaA9DCAualliZD21AlIaUUpRoFUv+aBZHQJnbsOx0MgF1fZQoaAZoCWgPQwhhxhSscatvQJSGlFKUaBVLyGgWR0CZ29brTpgUdX2UKGgGaAloD0MIpRKe0KvrcECUhpRSlGgVS+toFkdAmdvrHIZIhHV9lChoBmgJaA9DCCu9Nhur82hAlIaUUpRoFU3HAWgWR0CZ3FVzZHurdX2UKGgGaAloD0MInrMFhNYCdECUhpRSlGgVTSABaBZHQJncqePJaJR1fZQoaAZoCWgPQwiXjjnPWHZxQJSGlFKUaBVL0GgWR0CZ3UDkELYxdX2UKGgGaAloD0MIBCDu6pUncUCUhpRSlGgVS/RoFkdAmd4OWBz3iHV9lChoBmgJaA9DCN/CuvFuvnJAlIaUUpRoFUvwaBZHQJneIKPXCj11fZQoaAZoCWgPQwgdlDDT9tZxQJSGlFKUaBVL12gWR0CZ3k5Z8rqddX2UKGgGaAloD0MIpYXLKizncECUhpRSlGgVS/1oFkdAmd6lZs9B8nV9lChoBmgJaA9DCP7viArVeHJAlIaUUpRoFUvUaBZHQJne4BMi8nN1fZQoaAZoCWgPQwidhNIXwuFxQJSGlFKUaBVLvGgWR0CZ3vFKkEcLdX2UKGgGaAloD0MIaTUk7jHjc0CUhpRSlGgVS9VoFkdAmd8xC6YmcHV9lChoBmgJaA9DCJRt4A7UoG5AlIaUUpRoFUvaaBZHQJnfcW1twaR1fZQoaAZoCWgPQwjtRElIZNlwQJSGlFKUaBVL1mgWR0CZ33Xwb2lEdX2UKGgGaAloD0MIxQJf0S3DckCUhpRSlGgVS8xoFkdAmd+WaQV9GHV9lChoBmgJaA9DCOAu+3WnHG1AlIaUUpRoFUvMaBZHQJnf04o7V8V1fZQoaAZoCWgPQwjuCn2wDAByQJSGlFKUaBVL32gWR0CZ4DtBfKISdX2UKGgGaAloD0MIcxB0tGoYcECUhpRSlGgVS9hoFkdAmeCB7Z39rHV9lChoBmgJaA9DCHZwsDcxPE5AlIaUUpRoFUufaBZHQJnhIbPyCnR1fZQoaAZoCWgPQwgn+RG/4idxQJSGlFKUaBVL7GgWR0CZ81C+De0pdX2UKGgGaAloD0MIFr6+1qWVbUCUhpRSlGgVS85oFkdAmfNaF/QSjHV9lChoBmgJaA9DCOj4aHEGHHFAlIaUUpRoFUvCaBZHQJn05BZ6lch1fZQoaAZoCWgPQwh+AihG1mRyQJSGlFKUaBVL7GgWR0CZ9PNb1RLsdX2UKGgGaAloD0MIihwibk6JcUCUhpRSlGgVS+xoFkdAmfWYP07KaHV9lChoBmgJaA9DCD2bVZ9rVnBAlIaUUpRoFUvBaBZHQJn2F1IRRMx1fZQoaAZoCWgPQwiSByKLtPBwQJSGlFKUaBVNFQFoFkdAmfZIZdfLLnV9lChoBmgJaA9DCIeMR6lEmXBAlIaUUpRoFUvuaBZHQJn3BoK2KEZ1fZQoaAZoCWgPQwg826M3XNBwQJSGlFKUaBVLwmgWR0CZ9z44ZMtcdX2UKGgGaAloD0MIJHuEmuGTcECUhpRSlGgVTQIBaBZHQJn3bArQPZt1fZQoaAZoCWgPQwg1Ymafx1JwQJSGlFKUaBVNJQFoFkdAmfgNmDlHSXV9lChoBmgJaA9DCFiqC3jZE3FAlIaUUpRoFUvVaBZHQJn46C5Etul1fZQoaAZoCWgPQwhiMH+FjCxzQJSGlFKUaBVL3WgWR0CZ+PHDaXa8dX2UKGgGaAloD0MIITtvY3NackCUhpRSlGgVS9doFkdAmfkAhfShJ3V9lChoBmgJaA9DCNvBiH0CmXJAlIaUUpRoFU1nAWgWR0CZ+W+9Jz1cdX2UKGgGaAloD0MIfcoxWdz6cECUhpRSlGgVS9RoFkdAmfrR/EwWWXV9lChoBmgJaA9DCAckYd9Ok3JAlIaUUpRoFUvraBZHQJn7bXbuc+d1fZQoaAZoCWgPQwg9t9CVyKxxQJSGlFKUaBVLy2gWR0CZ/AJBw++udX2UKGgGaAloD0MIC5bqAt7zc0CUhpRSlGgVS9toFkdAmfxHV9Wp63V9lChoBmgJaA9DCP6cgvzsT3FAlIaUUpRoFUv/aBZHQJn8zMkhRqJ1fZQoaAZoCWgPQwhubeF56fJyQJSGlFKUaBVNoAFoFkdAmf0S9EkSmXV9lChoBmgJaA9DCDV7oBXY/nFAlIaUUpRoFUvlaBZHQJn9f/Lkjop1fZQoaAZoCWgPQwhPV3cstltxQJSGlFKUaBVL62gWR0CZ/gpWV/tqdX2UKGgGaAloD0MIkNyadJsEcUCUhpRSlGgVS/FoFkdAmf4LYkE9uHV9lChoBmgJaA9DCP9aXrleGnBAlIaUUpRoFUvCaBZHQJn+X0XgtOF1fZQoaAZoCWgPQwgDllzFYtNxQJSGlFKUaBVL42gWR0CZ/muyu6mPdX2UKGgGaAloD0MIRSxi2CE/cECUhpRSlGgVS99oFkdAmf828ujASHV9lChoBmgJaA9DCGSWPQlsAnBAlIaUUpRoFUvjaBZHQJn/PZyuIRB1fZQoaAZoCWgPQwiaeAd4UodxQJSGlFKUaBVL82gWR0CaAC1O0svqdX2UKGgGaAloD0MI7Q2+MFmfc0CUhpRSlGgVS8xoFkdAmgCSNGViWnV9lChoBmgJaA9DCKTC2EKQ5FJAlIaUUpRoFUujaBZHQJoBgeCCjDd1fZQoaAZoCWgPQwhtVn2u9vJyQJSGlFKUaBVLzWgWR0CaAiVu76HkdX2UKGgGaAloD0MIwmosYe3ackCUhpRSlGgVS/NoFkdAmgLjbSJCSnV9lChoBmgJaA9DCFBSYAGM+XFAlIaUUpRoFUvDaBZHQJoD36hxo7F1fZQoaAZoCWgPQwgKhJ1iVfdwQJSGlFKUaBVL02gWR0CaA+pfQa73dX2UKGgGaAloD0MI203wTdNUcUCUhpRSlGgVTRIBaBZHQJoFYSpR4yJ1fZQoaAZoCWgPQwjEXb2KjNZsQJSGlFKUaBVL4GgWR0CaBeB68g6mdX2UKGgGaAloD0MInIh+bX2OcUCUhpRSlGgVS+ZoFkdAmgaoHoouw3V9lChoBmgJaA9DCCiZnNpZTnBAlIaUUpRoFUvmaBZHQJoGv1oQFs51fZQoaAZoCWgPQwhqMuNtJXdxQJSGlFKUaBVLz2gWR0CaBwtw71ZldX2UKGgGaAloD0MIhj3t8NegcECUhpRSlGgVS9loFkdAmgdpDmbLEHV9lChoBmgJaA9DCAItXcG2cnJAlIaUUpRoFU0NAWgWR0CaB8ysS00FdX2UKGgGaAloD0MIequuQ7Vpb0CUhpRSlGgVS8loFkdAmgg/GlyimHV9lChoBmgJaA9DCKq3BraKB3FAlIaUUpRoFUvcaBZHQJoJkPe54GF1fZQoaAZoCWgPQwgNVMa/z5RGQJSGlFKUaBVN6ANoFkdAmgm0dJaq0nV9lChoBmgJaA9DCK4upwREk25AlIaUUpRoFUvGaBZHQJoJx67dzn11fZQoaAZoCWgPQwjVPbK5akVyQJSGlFKUaBVLvGgWR0CaCpV4X40udX2UKGgGaAloD0MIRYKpZlZackCUhpRSlGgVTQQBaBZHQJoMrUKArhB1fZQoaAZoCWgPQwgEIVnAxIdwQJSGlFKUaBVL3WgWR0CaDMHuZ1FIdX2UKGgGaAloD0MI93XgnJEKcECUhpRSlGgVS+poFkdAmg1ICQtBfXV9lChoBmgJaA9DCApMp3VbVnFAlIaUUpRoFUvDaBZHQJoNkJ/oaDR1fZQoaAZoCWgPQwgwKqkT0C5xQJSGlFKUaBVLz2gWR0CaDZqVhTfjdX2UKGgGaAloD0MI98q8VZctcECUhpRSlGgVS9JoFkdAmg7R6Ww/xHV9lChoBmgJaA9DCPKZ7J+ncm9AlIaUUpRoFUvaaBZHQJoPC+Yc/+t1fZQoaAZoCWgPQwg49BYPL5pwQJSGlFKUaBVLy2gWR0CaD1T4cm0FdX2UKGgGaAloD0MIwjI2dHPScUCUhpRSlGgVS+doFkdAmg+NRzijtXV9lChoBmgJaA9DCAGKkSXzPm9AlIaUUpRoFUvdaBZHQJoQBArxy4p1fZQoaAZoCWgPQwhEp+fdWBBKQJSGlFKUaBVN6ANoFkdAmhAizkZJkHV9lChoBmgJaA9DCIYCtoMR3mxAlIaUUpRoFUvWaBZHQJoQjC53C9B1fZQoaAZoCWgPQwi1i2mme+JuQJSGlFKUaBVL2GgWR0CaEKTw2ETQdX2UKGgGaAloD0MIKGTnbezsckCUhpRSlGgVS95oFkdAmhDJyU9py3V9lChoBmgJaA9DCI5bzM8NhXNAlIaUUpRoFU0gAWgWR0CaEPK3/givdX2UKGgGaAloD0MIlN3M6Ic/cECUhpRSlGgVS9FoFkdAmhD47q6e5HV9lChoBmgJaA9DCDArFOl+nXFAlIaUUpRoFUu9aBZHQJoRoQ04zad1fZQoaAZoCWgPQwij5xa60stxQJSGlFKUaBVLx2gWR0CaEh72criEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34ebcb2761b7c046d63fa2a7435c64a929fab544c6c423686342516334f553b5
3
+ size 147102
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f040f5b7700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f040f5b7790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f040f5b7820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f040f5b78b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f040f5b7940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f040f5b79d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f040f5b7a60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f040f5b7af0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f040f5b7b80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f040f5b7c10>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f040f5b7ca0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f040f5ba060>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670620844694340586,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpJGbvDdU26vAdKO/0hs7mEdw07BrldugAAgD8AAIA/2pnbva+SJj+dmeA8tKPsvuHv67wlqxM9AAAAAAAAAAAa/yA+aiSWPvn+Nr60362+HjOuPL6LBr0AAAAAAAAAAM26O71680I+RL4jPcMeY7632WG8dhSWvAAAAAAAAAAAgFIVvURovD+ZCjC+hsKavX4Bob3JNES+AAAAAAAAAAAARBk8HGcvPQdYlz6Z9US+WYuEPtJ5+r0AAAAAAAAAAGZE2LzpMRO8XjEevhu7Mr1TvoY9HkFZPgAAAAAAAIA/GmF4Pfckpz4PzQW+4ka1vm2Z0buN7G68AAAAAAAAAACaYce7D3YCvHV01r1BUMe8f3ZIPAwEM74AAIA/AACAP7NRLT0pcDq6vUWouQt9UrYuG5Y3nS7FOAAAgD8AAIA/zX56vMPxf7oi6pM7yQOOPHalwrrw23Y9AACAPwAAgD9gth++hmCaP9QkxL7hcUK/4RGDvrqgNb0AAAAAAAAAAMAsRz6s5Pg+EhiOvnrH3b75PHE9bg3/vQAAAAAAAAAAzRuRvGMRAD+hKDS9EUzavm4zcbr3Kgo8AAAAAAAAAAAa+0g9sX+cPZ0bbL5Lg42+pofbvaK5970AAAAAAAAAAJq7Ezw9yVS7HnkXvH/OgDwHV4w8Q4xevQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9DP1usVybkCUhpRSlIwBbJRLv4wBdJRHQJnW7V7Qb+91fZQoaAZoCWgPQwjMtP0r66VxQJSGlFKUaBVLyGgWR0CZ1xAbhm5EdX2UKGgGaAloD0MIWpwxzAmJcECUhpRSlGgVS+poFkdAmddBm5DqnnV9lChoBmgJaA9DCJOLMbAOd3BAlIaUUpRoFUv8aBZHQJnXgneBQN11fZQoaAZoCWgPQwh/oUeM3iRxQJSGlFKUaBVL9GgWR0CZ2OPgNwzddX2UKGgGaAloD0MImrZ/ZeWtckCUhpRSlGgVS8NoFkdAmdj1qN6w+3V9lChoBmgJaA9DCL1SliFOSnNAlIaUUpRoFUvFaBZHQJnZH1ZkkKN1fZQoaAZoCWgPQwjyfAbUW7dxQJSGlFKUaBVLvmgWR0CZ2WArhBJJdX2UKGgGaAloD0MI7L/OTVtocECUhpRSlGgVS+toFkdAmdncV58jRnV9lChoBmgJaA9DCF6+9WG943FAlIaUUpRoFUvqaBZHQJnahdC3PRl1fZQoaAZoCWgPQwjVljrIa5lxQJSGlFKUaBVLz2gWR0CZ2ue5WilBdX2UKGgGaAloD0MIsKpefic1c0CUhpRSlGgVS71oFkdAmdsVCgK4QXV9lChoBmgJaA9DCKUw73Fm03FAlIaUUpRoFUvsaBZHQJnbMpjMFEB1fZQoaAZoCWgPQwi8IvjfCnJyQJSGlFKUaBVL1mgWR0CZ2zJEH+qBdX2UKGgGaAloD0MIeJeL+M6ybUCUhpRSlGgVS8hoFkdAmduP3JxNqXV9lChoBmgJaA9DCAualliZD21AlIaUUpRoFUv+aBZHQJnbsOx0MgF1fZQoaAZoCWgPQwhhxhSscatvQJSGlFKUaBVLyGgWR0CZ29brTpgUdX2UKGgGaAloD0MIpRKe0KvrcECUhpRSlGgVS+toFkdAmdvrHIZIhHV9lChoBmgJaA9DCCu9Nhur82hAlIaUUpRoFU3HAWgWR0CZ3FVzZHurdX2UKGgGaAloD0MInrMFhNYCdECUhpRSlGgVTSABaBZHQJncqePJaJR1fZQoaAZoCWgPQwiXjjnPWHZxQJSGlFKUaBVL0GgWR0CZ3UDkELYxdX2UKGgGaAloD0MIBCDu6pUncUCUhpRSlGgVS/RoFkdAmd4OWBz3iHV9lChoBmgJaA9DCN/CuvFuvnJAlIaUUpRoFUvwaBZHQJneIKPXCj11fZQoaAZoCWgPQwgdlDDT9tZxQJSGlFKUaBVL12gWR0CZ3k5Z8rqddX2UKGgGaAloD0MIpYXLKizncECUhpRSlGgVS/1oFkdAmd6lZs9B8nV9lChoBmgJaA9DCP7viArVeHJAlIaUUpRoFUvUaBZHQJne4BMi8nN1fZQoaAZoCWgPQwidhNIXwuFxQJSGlFKUaBVLvGgWR0CZ3vFKkEcLdX2UKGgGaAloD0MIaTUk7jHjc0CUhpRSlGgVS9VoFkdAmd8xC6YmcHV9lChoBmgJaA9DCJRt4A7UoG5AlIaUUpRoFUvaaBZHQJnfcW1twaR1fZQoaAZoCWgPQwjtRElIZNlwQJSGlFKUaBVL1mgWR0CZ33Xwb2lEdX2UKGgGaAloD0MIxQJf0S3DckCUhpRSlGgVS8xoFkdAmd+WaQV9GHV9lChoBmgJaA9DCOAu+3WnHG1AlIaUUpRoFUvMaBZHQJnf04o7V8V1fZQoaAZoCWgPQwjuCn2wDAByQJSGlFKUaBVL32gWR0CZ4DtBfKISdX2UKGgGaAloD0MIcxB0tGoYcECUhpRSlGgVS9hoFkdAmeCB7Z39rHV9lChoBmgJaA9DCHZwsDcxPE5AlIaUUpRoFUufaBZHQJnhIbPyCnR1fZQoaAZoCWgPQwgn+RG/4idxQJSGlFKUaBVL7GgWR0CZ81C+De0pdX2UKGgGaAloD0MIFr6+1qWVbUCUhpRSlGgVS85oFkdAmfNaF/QSjHV9lChoBmgJaA9DCOj4aHEGHHFAlIaUUpRoFUvCaBZHQJn05BZ6lch1fZQoaAZoCWgPQwh+AihG1mRyQJSGlFKUaBVL7GgWR0CZ9PNb1RLsdX2UKGgGaAloD0MIihwibk6JcUCUhpRSlGgVS+xoFkdAmfWYP07KaHV9lChoBmgJaA9DCD2bVZ9rVnBAlIaUUpRoFUvBaBZHQJn2F1IRRMx1fZQoaAZoCWgPQwiSByKLtPBwQJSGlFKUaBVNFQFoFkdAmfZIZdfLLnV9lChoBmgJaA9DCIeMR6lEmXBAlIaUUpRoFUvuaBZHQJn3BoK2KEZ1fZQoaAZoCWgPQwg826M3XNBwQJSGlFKUaBVLwmgWR0CZ9z44ZMtcdX2UKGgGaAloD0MIJHuEmuGTcECUhpRSlGgVTQIBaBZHQJn3bArQPZt1fZQoaAZoCWgPQwg1Ymafx1JwQJSGlFKUaBVNJQFoFkdAmfgNmDlHSXV9lChoBmgJaA9DCFiqC3jZE3FAlIaUUpRoFUvVaBZHQJn46C5Etul1fZQoaAZoCWgPQwhiMH+FjCxzQJSGlFKUaBVL3WgWR0CZ+PHDaXa8dX2UKGgGaAloD0MIITtvY3NackCUhpRSlGgVS9doFkdAmfkAhfShJ3V9lChoBmgJaA9DCNvBiH0CmXJAlIaUUpRoFU1nAWgWR0CZ+W+9Jz1cdX2UKGgGaAloD0MIfcoxWdz6cECUhpRSlGgVS9RoFkdAmfrR/EwWWXV9lChoBmgJaA9DCAckYd9Ok3JAlIaUUpRoFUvraBZHQJn7bXbuc+d1fZQoaAZoCWgPQwg9t9CVyKxxQJSGlFKUaBVLy2gWR0CZ/AJBw++udX2UKGgGaAloD0MIC5bqAt7zc0CUhpRSlGgVS9toFkdAmfxHV9Wp63V9lChoBmgJaA9DCP6cgvzsT3FAlIaUUpRoFUv/aBZHQJn8zMkhRqJ1fZQoaAZoCWgPQwhubeF56fJyQJSGlFKUaBVNoAFoFkdAmf0S9EkSmXV9lChoBmgJaA9DCDV7oBXY/nFAlIaUUpRoFUvlaBZHQJn9f/Lkjop1fZQoaAZoCWgPQwhPV3cstltxQJSGlFKUaBVL62gWR0CZ/gpWV/tqdX2UKGgGaAloD0MIkNyadJsEcUCUhpRSlGgVS/FoFkdAmf4LYkE9uHV9lChoBmgJaA9DCP9aXrleGnBAlIaUUpRoFUvCaBZHQJn+X0XgtOF1fZQoaAZoCWgPQwgDllzFYtNxQJSGlFKUaBVL42gWR0CZ/muyu6mPdX2UKGgGaAloD0MIRSxi2CE/cECUhpRSlGgVS99oFkdAmf828ujASHV9lChoBmgJaA9DCGSWPQlsAnBAlIaUUpRoFUvjaBZHQJn/PZyuIRB1fZQoaAZoCWgPQwiaeAd4UodxQJSGlFKUaBVL82gWR0CaAC1O0svqdX2UKGgGaAloD0MI7Q2+MFmfc0CUhpRSlGgVS8xoFkdAmgCSNGViWnV9lChoBmgJaA9DCKTC2EKQ5FJAlIaUUpRoFUujaBZHQJoBgeCCjDd1fZQoaAZoCWgPQwhtVn2u9vJyQJSGlFKUaBVLzWgWR0CaAiVu76HkdX2UKGgGaAloD0MIwmosYe3ackCUhpRSlGgVS/NoFkdAmgLjbSJCSnV9lChoBmgJaA9DCFBSYAGM+XFAlIaUUpRoFUvDaBZHQJoD36hxo7F1fZQoaAZoCWgPQwgKhJ1iVfdwQJSGlFKUaBVL02gWR0CaA+pfQa73dX2UKGgGaAloD0MI203wTdNUcUCUhpRSlGgVTRIBaBZHQJoFYSpR4yJ1fZQoaAZoCWgPQwjEXb2KjNZsQJSGlFKUaBVL4GgWR0CaBeB68g6mdX2UKGgGaAloD0MInIh+bX2OcUCUhpRSlGgVS+ZoFkdAmgaoHoouw3V9lChoBmgJaA9DCCiZnNpZTnBAlIaUUpRoFUvmaBZHQJoGv1oQFs51fZQoaAZoCWgPQwhqMuNtJXdxQJSGlFKUaBVLz2gWR0CaBwtw71ZldX2UKGgGaAloD0MIhj3t8NegcECUhpRSlGgVS9loFkdAmgdpDmbLEHV9lChoBmgJaA9DCAItXcG2cnJAlIaUUpRoFU0NAWgWR0CaB8ysS00FdX2UKGgGaAloD0MIequuQ7Vpb0CUhpRSlGgVS8loFkdAmgg/GlyimHV9lChoBmgJaA9DCKq3BraKB3FAlIaUUpRoFUvcaBZHQJoJkPe54GF1fZQoaAZoCWgPQwgNVMa/z5RGQJSGlFKUaBVN6ANoFkdAmgm0dJaq0nV9lChoBmgJaA9DCK4upwREk25AlIaUUpRoFUvGaBZHQJoJx67dzn11fZQoaAZoCWgPQwjVPbK5akVyQJSGlFKUaBVLvGgWR0CaCpV4X40udX2UKGgGaAloD0MIRYKpZlZackCUhpRSlGgVTQQBaBZHQJoMrUKArhB1fZQoaAZoCWgPQwgEIVnAxIdwQJSGlFKUaBVL3WgWR0CaDMHuZ1FIdX2UKGgGaAloD0MI93XgnJEKcECUhpRSlGgVS+poFkdAmg1ICQtBfXV9lChoBmgJaA9DCApMp3VbVnFAlIaUUpRoFUvDaBZHQJoNkJ/oaDR1fZQoaAZoCWgPQwgwKqkT0C5xQJSGlFKUaBVLz2gWR0CaDZqVhTfjdX2UKGgGaAloD0MI98q8VZctcECUhpRSlGgVS9JoFkdAmg7R6Ww/xHV9lChoBmgJaA9DCPKZ7J+ncm9AlIaUUpRoFUvaaBZHQJoPC+Yc/+t1fZQoaAZoCWgPQwg49BYPL5pwQJSGlFKUaBVLy2gWR0CaD1T4cm0FdX2UKGgGaAloD0MIwjI2dHPScUCUhpRSlGgVS+doFkdAmg+NRzijtXV9lChoBmgJaA9DCAGKkSXzPm9AlIaUUpRoFUvdaBZHQJoQBArxy4p1fZQoaAZoCWgPQwhEp+fdWBBKQJSGlFKUaBVN6ANoFkdAmhAizkZJkHV9lChoBmgJaA9DCIYCtoMR3mxAlIaUUpRoFUvWaBZHQJoQjC53C9B1fZQoaAZoCWgPQwi1i2mme+JuQJSGlFKUaBVL2GgWR0CaEKTw2ETQdX2UKGgGaAloD0MIKGTnbezsckCUhpRSlGgVS95oFkdAmhDJyU9py3V9lChoBmgJaA9DCI5bzM8NhXNAlIaUUpRoFU0gAWgWR0CaEPK3/givdX2UKGgGaAloD0MIlN3M6Ic/cECUhpRSlGgVS9FoFkdAmhD47q6e5HV9lChoBmgJaA9DCDArFOl+nXFAlIaUUpRoFUu9aBZHQJoRoQ04zad1fZQoaAZoCWgPQwij5xa60stxQJSGlFKUaBVLx2gWR0CaEh72criEdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 496,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c317552de91ff38a44f9210508ba1a5d78f370f82ba050de09729e642bdb3ad5
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c37f07bd389a4840d303c6d262f7b62edc1372d4d06b0dbf5189e2f44e824448
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 288.1919097823254, "std_reward": 18.047758009213627, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T21:49:03.259248"}