sgoodfriend's picture
PPO playing CartPole-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
1cde088
raw
history blame
3.45 kB
from typing import Dict, Optional, Tuple, Type
import numpy as np
import torch
import torch.nn as nn
from numpy.typing import NDArray
from torch.distributions import Distribution, constraints
from rl_algo_impls.shared.actor.actor import Actor, PiForward, pi_forward
from rl_algo_impls.shared.actor.categorical import MaskedCategorical
from rl_algo_impls.shared.encoder import EncoderOutDim
from rl_algo_impls.shared.module.utils import mlp
class MultiCategorical(Distribution):
def __init__(
self,
nvec: NDArray[np.int64],
probs=None,
logits=None,
validate_args=None,
masks: Optional[torch.Tensor] = None,
):
# Either probs or logits should be set
assert (probs is None) != (logits is None)
masks_split = (
torch.split(masks, nvec.tolist(), dim=1)
if masks is not None
else [None] * len(nvec)
)
if probs:
self.dists = [
MaskedCategorical(probs=p, validate_args=validate_args, mask=m)
for p, m in zip(torch.split(probs, nvec.tolist(), dim=1), masks_split)
]
param = probs
else:
assert logits is not None
self.dists = [
MaskedCategorical(logits=lg, validate_args=validate_args, mask=m)
for lg, m in zip(torch.split(logits, nvec.tolist(), dim=1), masks_split)
]
param = logits
batch_shape = param.size()[:-1] if param.ndimension() > 1 else torch.Size()
super().__init__(batch_shape=batch_shape, validate_args=validate_args)
def log_prob(self, action: torch.Tensor) -> torch.Tensor:
prob_stack = torch.stack(
[c.log_prob(a) for a, c in zip(action.T, self.dists)], dim=-1
)
return prob_stack.sum(dim=-1)
def entropy(self) -> torch.Tensor:
return torch.stack([c.entropy() for c in self.dists], dim=-1).sum(dim=-1)
def sample(self, sample_shape: torch.Size = torch.Size()) -> torch.Tensor:
return torch.stack([c.sample(sample_shape) for c in self.dists], dim=-1)
@property
def mode(self) -> torch.Tensor:
return torch.stack([c.mode for c in self.dists], dim=-1)
@property
def arg_constraints(self) -> Dict[str, constraints.Constraint]:
# Constraints handled by child distributions in dist
return {}
class MultiDiscreteActorHead(Actor):
def __init__(
self,
nvec: NDArray[np.int64],
in_dim: EncoderOutDim,
hidden_sizes: Tuple[int, ...] = (32,),
activation: Type[nn.Module] = nn.ReLU,
init_layers_orthogonal: bool = True,
) -> None:
super().__init__()
self.nvec = nvec
assert isinstance(in_dim, int)
layer_sizes = (in_dim,) + hidden_sizes + (nvec.sum(),)
self._fc = mlp(
layer_sizes,
activation,
init_layers_orthogonal=init_layers_orthogonal,
final_layer_gain=0.01,
)
def forward(
self,
obs: torch.Tensor,
actions: Optional[torch.Tensor] = None,
action_masks: Optional[torch.Tensor] = None,
) -> PiForward:
logits = self._fc(obs)
pi = MultiCategorical(self.nvec, logits=logits, masks=action_masks)
return pi_forward(pi, actions)
@property
def action_shape(self) -> Tuple[int, ...]:
return (len(self.nvec),)