sgoodfriend's picture
PPO playing BipedalWalker-v3 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
3f2a7a0
import argparse
import json
import os
import random
from dataclasses import asdict
from pathlib import Path
from typing import Dict, Optional, Type, Union
import gym
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.backends.cudnn
import yaml
from gym.spaces import Box, Discrete
from torch.utils.tensorboard.writer import SummaryWriter
from rl_algo_impls.a2c.a2c import A2C
from rl_algo_impls.dqn.dqn import DQN
from rl_algo_impls.dqn.policy import DQNPolicy
from rl_algo_impls.ppo.ppo import PPO
from rl_algo_impls.runner.config import Config, Hyperparams
from rl_algo_impls.shared.algorithm import Algorithm
from rl_algo_impls.shared.callbacks.eval_callback import EvalCallback
from rl_algo_impls.shared.policy.actor_critic import ActorCritic
from rl_algo_impls.shared.policy.policy import Policy
from rl_algo_impls.shared.vec_env.utils import import_for_env_id, is_microrts
from rl_algo_impls.vpg.policy import VPGActorCritic
from rl_algo_impls.vpg.vpg import VanillaPolicyGradient
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv, single_observation_space
ALGOS: Dict[str, Type[Algorithm]] = {
"dqn": DQN,
"vpg": VanillaPolicyGradient,
"ppo": PPO,
"a2c": A2C,
}
POLICIES: Dict[str, Type[Policy]] = {
"dqn": DQNPolicy,
"vpg": VPGActorCritic,
"ppo": ActorCritic,
"a2c": ActorCritic,
}
HYPERPARAMS_PATH = "hyperparams"
def base_parser(multiple: bool = True) -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--algo",
default=["dqn"],
type=str,
choices=list(ALGOS.keys()),
nargs="+" if multiple else 1,
help="Abbreviation(s) of algorithm(s)",
)
parser.add_argument(
"--env",
default=["CartPole-v1"],
type=str,
nargs="+" if multiple else 1,
help="Name of environment(s) in gym",
)
parser.add_argument(
"--seed",
default=[1],
type=int,
nargs="*" if multiple else "?",
help="Seeds to run experiment. Unset will do one run with no set seed",
)
return parser
def load_hyperparams(algo: str, env_id: str) -> Hyperparams:
root_path = Path(__file__).parent.parent
hyperparams_path = os.path.join(root_path, HYPERPARAMS_PATH, f"{algo}.yml")
with open(hyperparams_path, "r") as f:
hyperparams_dict = yaml.safe_load(f)
if env_id in hyperparams_dict:
return Hyperparams(**hyperparams_dict[env_id])
import_for_env_id(env_id)
spec = gym.spec(env_id)
entry_point_name = str(spec.entry_point) # type: ignore
if "AtariEnv" in entry_point_name and "_atari" in hyperparams_dict:
return Hyperparams(**hyperparams_dict["_atari"])
elif "gym_microrts" in entry_point_name and "_microrts" in hyperparams_dict:
return Hyperparams(**hyperparams_dict["_microrts"])
else:
raise ValueError(f"{env_id} not specified in {algo} hyperparameters file")
def get_device(config: Config, env: VecEnv) -> torch.device:
device = config.device
# cuda by default
if device == "auto":
device = "cuda"
# Apple MPS is a second choice (sometimes)
if device == "cuda" and not torch.cuda.is_available():
device = "mps"
# If no MPS, fallback to cpu
if device == "mps" and not torch.backends.mps.is_available():
device = "cpu"
# Simple environments like Discreet and 1-D Boxes might also be better
# served with the CPU.
if device == "mps":
obs_space = single_observation_space(env)
if isinstance(obs_space, Discrete):
device = "cpu"
elif isinstance(obs_space, Box) and len(obs_space.shape) == 1:
device = "cpu"
if is_microrts(config):
device = "cpu"
print(f"Device: {device}")
return torch.device(device)
def set_seeds(seed: Optional[int], use_deterministic_algorithms: bool) -> None:
if seed is None:
return
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(use_deterministic_algorithms)
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
# Stop warning and it would introduce stochasticity if I was using TF
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
def make_policy(
algo: str,
env: VecEnv,
device: torch.device,
load_path: Optional[str] = None,
**kwargs,
) -> Policy:
policy = POLICIES[algo](env, **kwargs).to(device)
if load_path:
policy.load(load_path)
return policy
def plot_eval_callback(callback: EvalCallback, tb_writer: SummaryWriter, run_name: str):
figure = plt.figure()
cumulative_steps = [
(idx + 1) * callback.step_freq for idx in range(len(callback.stats))
]
plt.plot(
cumulative_steps,
[s.score.mean for s in callback.stats],
"b-",
label="mean",
)
plt.plot(
cumulative_steps,
[s.score.mean - s.score.std for s in callback.stats],
"g--",
label="mean-std",
)
plt.fill_between(
cumulative_steps,
[s.score.min for s in callback.stats], # type: ignore
[s.score.max for s in callback.stats], # type: ignore
facecolor="cyan",
label="range",
)
plt.xlabel("Steps")
plt.ylabel("Score")
plt.legend()
plt.title(f"Eval {run_name}")
tb_writer.add_figure("eval", figure)
Scalar = Union[bool, str, float, int, None]
def hparam_dict(
hyperparams: Hyperparams, args: Dict[str, Union[Scalar, list]]
) -> Dict[str, Scalar]:
flattened = args.copy()
for k, v in flattened.items():
if isinstance(v, list):
flattened[k] = json.dumps(v)
for k, v in asdict(hyperparams).items():
if isinstance(v, dict):
for sk, sv in v.items():
key = f"{k}/{sk}"
if isinstance(sv, dict) or isinstance(sv, list):
flattened[key] = str(sv)
else:
flattened[key] = sv
elif isinstance(v, list):
flattened[k] = json.dumps(v)
else:
flattened[k] = v # type: ignore
return flattened # type: ignore