sgoodfriend's picture
PPO playing Acrobot-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
b7e947a
import os
from abc import ABC, abstractmethod
from copy import deepcopy
from typing import Dict, Optional, Type, TypeVar, Union
import numpy as np
import torch
import torch.nn as nn
from stable_baselines3.common.vec_env import unwrap_vec_normalize
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize
from rl_algo_impls.wrappers.normalize import NormalizeObservation, NormalizeReward
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv, VecEnvObs, find_wrapper
ACTIVATION: Dict[str, Type[nn.Module]] = {
"tanh": nn.Tanh,
"relu": nn.ReLU,
}
VEC_NORMALIZE_FILENAME = "vecnormalize.pkl"
MODEL_FILENAME = "model.pth"
NORMALIZE_OBSERVATION_FILENAME = "norm_obs.npz"
NORMALIZE_REWARD_FILENAME = "norm_reward.npz"
PolicySelf = TypeVar("PolicySelf", bound="Policy")
class Policy(nn.Module, ABC):
@abstractmethod
def __init__(self, env: VecEnv, **kwargs) -> None:
super().__init__()
self.env = env
self.vec_normalize = unwrap_vec_normalize(env)
self.norm_observation = find_wrapper(env, NormalizeObservation)
self.norm_reward = find_wrapper(env, NormalizeReward)
self.device = None
def to(
self: PolicySelf,
device: Optional[torch.device] = None,
dtype: Optional[Union[torch.dtype, str]] = None,
non_blocking: bool = False,
) -> PolicySelf:
super().to(device, dtype, non_blocking)
self.device = device
return self
@abstractmethod
def act(
self,
obs: VecEnvObs,
deterministic: bool = True,
action_masks: Optional[np.ndarray] = None,
) -> np.ndarray:
...
def save(self, path: str) -> None:
os.makedirs(path, exist_ok=True)
if self.vec_normalize:
self.vec_normalize.save(os.path.join(path, VEC_NORMALIZE_FILENAME))
if self.norm_observation:
self.norm_observation.save(
os.path.join(path, NORMALIZE_OBSERVATION_FILENAME)
)
if self.norm_reward:
self.norm_reward.save(os.path.join(path, NORMALIZE_REWARD_FILENAME))
torch.save(
self.state_dict(),
os.path.join(path, MODEL_FILENAME),
)
def load(self, path: str) -> None:
# VecNormalize load occurs in env.py
self.load_state_dict(
torch.load(os.path.join(path, MODEL_FILENAME), map_location=self.device)
)
if self.norm_observation:
self.norm_observation.load(
os.path.join(path, NORMALIZE_OBSERVATION_FILENAME)
)
if self.norm_reward:
self.norm_reward.load(os.path.join(path, NORMALIZE_REWARD_FILENAME))
def load_from(self: PolicySelf, policy: PolicySelf) -> PolicySelf:
self.load_state_dict(policy.state_dict())
if self.norm_observation:
assert policy.norm_observation
self.norm_observation.load_from(policy.norm_observation)
if self.norm_reward:
assert policy.norm_reward
self.norm_reward.load_from(policy.norm_reward)
return self
def reset_noise(self) -> None:
pass
def _as_tensor(self, obs: VecEnvObs) -> torch.Tensor:
assert isinstance(obs, np.ndarray)
o = torch.as_tensor(obs)
if self.device is not None:
o = o.to(self.device)
return o
def num_trainable_parameters(self) -> int:
return sum(p.numel() for p in self.parameters() if p.requires_grad)
def num_parameters(self) -> int:
return sum(p.numel() for p in self.parameters())
def sync_normalization(self, destination_env) -> None:
current = destination_env
while current != current.unwrapped:
if isinstance(current, VecNormalize):
assert self.vec_normalize
current.ret_rms = deepcopy(self.vec_normalize.ret_rms)
if hasattr(self.vec_normalize, "obs_rms"):
current.obs_rms = deepcopy(self.vec_normalize.obs_rms)
elif isinstance(current, NormalizeObservation):
assert self.norm_observation
current.rms = deepcopy(self.norm_observation.rms)
elif isinstance(current, NormalizeReward):
assert self.norm_reward
current.rms = deepcopy(self.norm_reward.rms)
current = getattr(current, "venv", getattr(current, "env", current))
if not current:
raise AttributeError(
f"{type(current)} doesn't include env or venv attribute"
)