DQN playing SpaceInvadersNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/1d4094fbcc9082de7f53f4348dd4c7c354152907
0016a0a
import itertools | |
import numpy as np | |
import os | |
from copy import deepcopy | |
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvWrapper | |
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from typing import List, Optional, Union | |
from shared.callbacks.callback import Callback | |
from shared.policy.policy import Policy | |
from shared.stats import Episode, EpisodeAccumulator, EpisodesStats | |
from wrappers.vec_episode_recorder import VecEpisodeRecorder | |
class EvaluateAccumulator(EpisodeAccumulator): | |
def __init__(self, num_envs: int, goal_episodes: int, print_returns: bool = True): | |
super().__init__(num_envs) | |
self.completed_episodes_by_env_idx = [[] for _ in range(num_envs)] | |
self.goal_episodes_per_env = int(np.ceil(goal_episodes / num_envs)) | |
self.print_returns = print_returns | |
def on_done(self, ep_idx: int, episode: Episode) -> None: | |
if ( | |
len(self.completed_episodes_by_env_idx[ep_idx]) | |
>= self.goal_episodes_per_env | |
): | |
return | |
self.completed_episodes_by_env_idx[ep_idx].append(episode) | |
if self.print_returns: | |
print( | |
f"Episode {len(self)} | " | |
f"Score {episode.score} | " | |
f"Length {episode.length}" | |
) | |
def __len__(self) -> int: | |
return sum(len(ce) for ce in self.completed_episodes_by_env_idx) | |
def episodes(self) -> List[Episode]: | |
return list(itertools.chain(*self.completed_episodes_by_env_idx)) | |
def is_done(self) -> bool: | |
return all( | |
len(ce) == self.goal_episodes_per_env | |
for ce in self.completed_episodes_by_env_idx | |
) | |
def evaluate( | |
env: VecEnv, | |
policy: Policy, | |
n_episodes: int, | |
render: bool = False, | |
deterministic: bool = True, | |
print_returns: bool = True, | |
) -> EpisodesStats: | |
policy.eval() | |
episodes = EvaluateAccumulator(env.num_envs, n_episodes, print_returns) | |
obs = env.reset() | |
while not episodes.is_done(): | |
act = policy.act(obs, deterministic=deterministic) | |
obs, rew, done, _ = env.step(act) | |
episodes.step(rew, done) | |
if render: | |
env.render() | |
stats = EpisodesStats(episodes.episodes) | |
if print_returns: | |
print(stats) | |
return stats | |
class EvalCallback(Callback): | |
def __init__( | |
self, | |
policy: Policy, | |
env: VecEnv, | |
tb_writer: SummaryWriter, | |
best_model_path: Optional[str] = None, | |
step_freq: Union[int, float] = 50_000, | |
n_episodes: int = 10, | |
save_best: bool = True, | |
deterministic: bool = True, | |
record_best_videos: bool = True, | |
video_env: Optional[VecEnv] = None, | |
best_video_dir: Optional[str] = None, | |
max_video_length: int = 3600, | |
) -> None: | |
super().__init__() | |
self.policy = policy | |
self.env = env | |
self.tb_writer = tb_writer | |
self.best_model_path = best_model_path | |
self.step_freq = int(step_freq) | |
self.n_episodes = n_episodes | |
self.save_best = save_best | |
self.deterministic = deterministic | |
self.stats: List[EpisodesStats] = [] | |
self.best = None | |
self.record_best_videos = record_best_videos | |
assert video_env or not record_best_videos | |
self.video_env = video_env | |
assert best_video_dir or not record_best_videos | |
self.best_video_dir = best_video_dir | |
if best_video_dir: | |
os.makedirs(best_video_dir, exist_ok=True) | |
self.max_video_length = max_video_length | |
self.best_video_base_path = None | |
def on_step(self, timesteps_elapsed: int = 1) -> bool: | |
super().on_step(timesteps_elapsed) | |
if self.timesteps_elapsed // self.step_freq >= len(self.stats): | |
sync_vec_normalize(self.policy.vec_normalize, self.env) | |
self.evaluate() | |
return True | |
def evaluate( | |
self, n_episodes: Optional[int] = None, print_returns: Optional[bool] = None | |
) -> EpisodesStats: | |
eval_stat = evaluate( | |
self.env, | |
self.policy, | |
n_episodes or self.n_episodes, | |
deterministic=self.deterministic, | |
print_returns=print_returns or False, | |
) | |
self.policy.train(True) | |
print(f"Eval Timesteps: {self.timesteps_elapsed} | {eval_stat}") | |
self.stats.append(eval_stat) | |
if not self.best or eval_stat >= self.best: | |
strictly_better = not self.best or eval_stat > self.best | |
self.best = eval_stat | |
if self.save_best: | |
assert self.best_model_path | |
self.policy.save(self.best_model_path) | |
print("Saved best model") | |
self.best.write_to_tensorboard( | |
self.tb_writer, "best_eval", self.timesteps_elapsed | |
) | |
if strictly_better and self.record_best_videos: | |
assert self.video_env and self.best_video_dir | |
sync_vec_normalize(self.policy.vec_normalize, self.video_env) | |
self.best_video_base_path = os.path.join( | |
self.best_video_dir, str(self.timesteps_elapsed) | |
) | |
video_wrapped = VecEpisodeRecorder( | |
self.video_env, | |
self.best_video_base_path, | |
max_video_length=self.max_video_length, | |
) | |
video_stats = evaluate( | |
video_wrapped, | |
self.policy, | |
1, | |
deterministic=self.deterministic, | |
print_returns=False, | |
) | |
print(f"Saved best video: {video_stats}") | |
eval_stat.write_to_tensorboard(self.tb_writer, "eval", self.timesteps_elapsed) | |
return eval_stat | |
def sync_vec_normalize( | |
origin_vec_normalize: Optional[VecNormalize], destination_env: VecEnv | |
) -> None: | |
if origin_vec_normalize is not None: | |
eval_env_wrapper = destination_env | |
while isinstance(eval_env_wrapper, VecEnvWrapper): | |
if isinstance(eval_env_wrapper, VecNormalize): | |
if hasattr(origin_vec_normalize, "obs_rms"): | |
eval_env_wrapper.obs_rms = deepcopy(origin_vec_normalize.obs_rms) | |
eval_env_wrapper.ret_rms = deepcopy(origin_vec_normalize.ret_rms) | |
eval_env_wrapper = eval_env_wrapper.venv | |