DQN playing Acrobot-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/0511de345b17175b7cf1ea706c3e05981f11761c
8e63d2a
from typing import Optional, Type | |
import gym | |
import torch | |
import torch.nn as nn | |
from rl_algo_impls.shared.encoder.cnn import FlattenedCnnEncoder | |
from rl_algo_impls.shared.module.module import layer_init | |
class MicrortsCnn(FlattenedCnnEncoder): | |
""" | |
Base CNN architecture for Gym-MicroRTS | |
""" | |
def __init__( | |
self, | |
obs_space: gym.Space, | |
activation: Type[nn.Module], | |
cnn_init_layers_orthogonal: Optional[bool], | |
linear_init_layers_orthogonal: bool, | |
cnn_flatten_dim: int, | |
**kwargs, | |
) -> None: | |
if cnn_init_layers_orthogonal is None: | |
cnn_init_layers_orthogonal = True | |
in_channels = obs_space.shape[0] # type: ignore | |
cnn = nn.Sequential( | |
layer_init( | |
nn.Conv2d(in_channels, 16, kernel_size=3, stride=2), | |
cnn_init_layers_orthogonal, | |
), | |
activation(), | |
layer_init(nn.Conv2d(16, 32, kernel_size=2), cnn_init_layers_orthogonal), | |
activation(), | |
nn.Flatten(), | |
) | |
super().__init__( | |
obs_space, | |
activation, | |
linear_init_layers_orthogonal, | |
cnn_flatten_dim, | |
cnn, | |
**kwargs, | |
) | |