A2C playing Walker2DBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
5dfc04f
from typing import Optional, Type | |
import gym | |
import torch.nn as nn | |
from rl_algo_impls.shared.encoder.cnn import FlattenedCnnEncoder | |
from rl_algo_impls.shared.module.utils import layer_init | |
class NatureCnn(FlattenedCnnEncoder): | |
""" | |
CNN from DQN Nature paper: Mnih, Volodymyr, et al. | |
"Human-level control through deep reinforcement learning." | |
Nature 518.7540 (2015): 529-533. | |
""" | |
def __init__( | |
self, | |
obs_space: gym.Space, | |
activation: Type[nn.Module], | |
cnn_init_layers_orthogonal: Optional[bool], | |
linear_init_layers_orthogonal: bool, | |
cnn_flatten_dim: int, | |
**kwargs, | |
) -> None: | |
if cnn_init_layers_orthogonal is None: | |
cnn_init_layers_orthogonal = True | |
in_channels = obs_space.shape[0] # type: ignore | |
cnn = nn.Sequential( | |
layer_init( | |
nn.Conv2d(in_channels, 32, kernel_size=8, stride=4), | |
cnn_init_layers_orthogonal, | |
), | |
activation(), | |
layer_init( | |
nn.Conv2d(32, 64, kernel_size=4, stride=2), | |
cnn_init_layers_orthogonal, | |
), | |
activation(), | |
layer_init( | |
nn.Conv2d(64, 64, kernel_size=3, stride=1), | |
cnn_init_layers_orthogonal, | |
), | |
activation(), | |
) | |
super().__init__( | |
obs_space, | |
activation, | |
linear_init_layers_orthogonal, | |
cnn_flatten_dim, | |
cnn, | |
**kwargs, | |
) | |