A2C playing PongNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/0511de345b17175b7cf1ea706c3e05981f11761c
7c70ebe
| from typing import Optional, Type | |
| import gym | |
| import torch | |
| import torch.nn as nn | |
| from rl_algo_impls.shared.encoder.cnn import FlattenedCnnEncoder | |
| from rl_algo_impls.shared.module.module import layer_init | |
| class MicrortsCnn(FlattenedCnnEncoder): | |
| """ | |
| Base CNN architecture for Gym-MicroRTS | |
| """ | |
| def __init__( | |
| self, | |
| obs_space: gym.Space, | |
| activation: Type[nn.Module], | |
| cnn_init_layers_orthogonal: Optional[bool], | |
| linear_init_layers_orthogonal: bool, | |
| cnn_flatten_dim: int, | |
| **kwargs, | |
| ) -> None: | |
| if cnn_init_layers_orthogonal is None: | |
| cnn_init_layers_orthogonal = True | |
| in_channels = obs_space.shape[0] # type: ignore | |
| cnn = nn.Sequential( | |
| layer_init( | |
| nn.Conv2d(in_channels, 16, kernel_size=3, stride=2), | |
| cnn_init_layers_orthogonal, | |
| ), | |
| activation(), | |
| layer_init(nn.Conv2d(16, 32, kernel_size=2), cnn_init_layers_orthogonal), | |
| activation(), | |
| nn.Flatten(), | |
| ) | |
| super().__init__( | |
| obs_space, | |
| activation, | |
| linear_init_layers_orthogonal, | |
| cnn_flatten_dim, | |
| cnn, | |
| **kwargs, | |
| ) | |