a2c-LunarLander-v2 / rl_algo_impls /runner /selfplay_evaluate.py
sgoodfriend's picture
A2C playing LunarLander-v2 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
de6a584
import copy
import dataclasses
import os
import shutil
from dataclasses import dataclass
from typing import List, NamedTuple, Optional
import numpy as np
import wandb
from rl_algo_impls.runner.config import Config, EnvHyperparams, Hyperparams, RunArgs
from rl_algo_impls.runner.evaluate import Evaluation
from rl_algo_impls.runner.running_utils import (
get_device,
load_hyperparams,
make_policy,
set_seeds,
)
from rl_algo_impls.shared.callbacks.eval_callback import evaluate
from rl_algo_impls.shared.vec_env import make_eval_env
from rl_algo_impls.wrappers.vec_episode_recorder import VecEpisodeRecorder
@dataclass
class SelfplayEvalArgs(RunArgs):
# Either wandb_run_paths or model_file_paths must have 2 elements in it.
wandb_run_paths: List[str] = dataclasses.field(default_factory=list)
model_file_paths: List[str] = dataclasses.field(default_factory=list)
render: bool = False
best: bool = True
n_envs: int = 1
n_episodes: int = 1
deterministic_eval: Optional[bool] = None
no_print_returns: bool = False
video_path: Optional[str] = None
def selfplay_evaluate(args: SelfplayEvalArgs, root_dir: str) -> Evaluation:
if args.wandb_run_paths:
api = wandb.Api()
args, config, player_1_model_path = load_player(
api, args.wandb_run_paths[0], args, root_dir
)
_, _, player_2_model_path = load_player(
api, args.wandb_run_paths[1], args, root_dir
)
elif args.model_file_paths:
hyperparams = load_hyperparams(args.algo, args.env)
config = Config(args, hyperparams, root_dir)
player_1_model_path, player_2_model_path = args.model_file_paths
else:
raise ValueError("Must specify 2 wandb_run_paths or 2 model_file_paths")
print(args)
set_seeds(args.seed, args.use_deterministic_algorithms)
env_make_kwargs = (
config.eval_hyperparams.get("env_overrides", {}).get("make_kwargs", {}).copy()
)
env_make_kwargs["num_selfplay_envs"] = args.n_envs * 2
env = make_eval_env(
config,
EnvHyperparams(**config.env_hyperparams),
override_hparams={
"n_envs": args.n_envs,
"selfplay_bots": {
player_2_model_path: args.n_envs,
},
"self_play_kwargs": {
"num_old_policies": 0,
"save_steps": np.inf,
"swap_steps": np.inf,
"bot_always_player_2": True,
},
"bots": None,
"make_kwargs": env_make_kwargs,
},
render=args.render,
normalize_load_path=player_1_model_path,
)
if args.video_path:
env = VecEpisodeRecorder(
env, args.video_path, max_video_length=18000, num_episodes=args.n_episodes
)
device = get_device(config, env)
policy = make_policy(
args.algo,
env,
device,
load_path=player_1_model_path,
**config.policy_hyperparams,
).eval()
deterministic = (
args.deterministic_eval
if args.deterministic_eval is not None
else config.eval_hyperparams.get("deterministic", True)
)
return Evaluation(
policy,
evaluate(
env,
policy,
args.n_episodes,
render=args.render,
deterministic=deterministic,
print_returns=not args.no_print_returns,
),
config,
)
class PlayerData(NamedTuple):
args: SelfplayEvalArgs
config: Config
model_path: str
def load_player(
api: wandb.Api, run_path: str, args: SelfplayEvalArgs, root_dir: str
) -> PlayerData:
args = copy.copy(args)
run = api.run(run_path)
params = run.config
args.algo = params["algo"]
args.env = params["env"]
args.seed = params.get("seed", None)
args.use_deterministic_algorithms = params.get("use_deterministic_algorithms", True)
config = Config(args, Hyperparams.from_dict_with_extra_fields(params), root_dir)
model_path = config.model_dir_path(best=args.best, downloaded=True)
model_archive_name = config.model_dir_name(best=args.best, extension=".zip")
run.file(model_archive_name).download()
if os.path.isdir(model_path):
shutil.rmtree(model_path)
shutil.unpack_archive(model_archive_name, model_path)
os.remove(model_archive_name)
return PlayerData(args, config, model_path)