sgarbi commited on
Commit
4f41cb0
1 Parent(s): b822a55

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -37,6 +37,8 @@ widget:
37
 
38
  ---
39
 
 
 
40
  This is a BERT sequence labeling model, is designed for Named Entity Recognition (NER) in the context of FDA nutrition labeling. It aims to identify and classify various nutritional elements from text dataproviding a structured interpretation of the content typically found on nutrition labels.
41
 
42
 
@@ -72,6 +74,68 @@ The training data for the `sgarbi/bert-fda-nutrition-ner` model was thoughtfully
72
  - The model should not be used to make recommendations about nutrition or health - it only extracts nutritional entities from text. Any nutrition advice should come from qualified experts.
73
  - The model may have biases related to the language and phrasing on certain types of food product labels. It should be re-evaluated periodically on new test sets.
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  ## Caveats and Recommendations
76
 
77
  - The model may struggle with typos, uncommon ingredients, or unusual phrasing not seen during training.
@@ -80,6 +144,4 @@ The training data for the `sgarbi/bert-fda-nutrition-ner` model was thoughtfully
80
 
81
  Here are some example model outputs on the provided text:
82
 
83
- {example_outputs}
84
-
85
- Let me know if you would like me to expand or modify the model card draft in any way. I'm happy to incorporate any additional details you think are important to include.
 
37
 
38
  ---
39
 
40
+ # Model Card for sgarbi/bert-fda-nutrition-ner
41
+
42
  This is a BERT sequence labeling model, is designed for Named Entity Recognition (NER) in the context of FDA nutrition labeling. It aims to identify and classify various nutritional elements from text dataproviding a structured interpretation of the content typically found on nutrition labels.
43
 
44
 
 
74
  - The model should not be used to make recommendations about nutrition or health - it only extracts nutritional entities from text. Any nutrition advice should come from qualified experts.
75
  - The model may have biases related to the language and phrasing on certain types of food product labels. It should be re-evaluated periodically on new test sets.
76
 
77
+ ## Label Map
78
+
79
+ The following is the label map used in the model, defining the various entity types that the model can recognize:
80
+
81
+ ```python
82
+ label_map = {
83
+ 'O': 0,
84
+ 'B-MACRONUTRIENTS': 1,
85
+ 'I-MACRONUTRIENTS': 2,
86
+ 'B-PROXIMATES': 3,
87
+ 'I-PROXIMATES': 4,
88
+ 'B-PROTEINS': 5,
89
+ 'I-PROTEINS': 6,
90
+ 'B-FIBER': 7,
91
+ 'I-FIBER': 8,
92
+ 'B-CARBOHYDRATES': 9,
93
+ 'I-CARBOHYDRATES': 10,
94
+ 'B-SUGARS': 11,
95
+ 'I-SUGARS': 12,
96
+ 'B-ALCOHOLS': 13,
97
+ 'I-ALCOHOLS': 14,
98
+ 'B-PHYSICALPROPERTIES': 15,
99
+ 'I-PHYSICALPROPERTIES': 16,
100
+ 'B-ORGANICCOMPOUNDS': 17,
101
+ 'I-ORGANICCOMPOUNDS': 18,
102
+ 'B-WATER': 19,
103
+ 'I-WATER': 20,
104
+ 'B-STIMULANTS': 21,
105
+ 'I-STIMULANTS': 22,
106
+ 'B-PRESERVATIVES': 23,
107
+ 'I-PRESERVATIVES': 24,
108
+ 'B-MINERALS': 25,
109
+ 'I-MINERALS': 26,
110
+ 'B-VITAMINS': 27,
111
+ 'I-VITAMINS': 28,
112
+ 'B-CAROTENOIDS': 29,
113
+ 'I-CAROTENOIDS': 30,
114
+ 'B-OTHER': 31,
115
+ 'I-OTHER': 32,
116
+ 'B-AMINOACIDS': 33,
117
+ 'I-AMINOACIDS': 34,
118
+ 'B-LIPIDS': 35,
119
+ 'I-LIPIDS': 36,
120
+ 'B-ANTIOXIDANTS': 37,
121
+ 'I-ANTIOXIDANTS': 38,
122
+ 'B-PHYTOCHEMICALS': 39,
123
+ 'I-PHYTOCHEMICALS': 40,
124
+ 'B-DIETARYFIBER': 41,
125
+ 'I-DIETARYFIBER': 42,
126
+ 'B-INGREDIENTS': 43,
127
+ 'I-INGREDIENTS': 44,
128
+ 'B-QUANTITY': 45,
129
+ 'I-QUANTITY': 46,
130
+ 'B-COUNTRY_ORIGIN': 47,
131
+ 'I-COUNTRY_ORIGIN': 48,
132
+ 'B-SERVING_SIZE': 49,
133
+ 'I-SERVING_SIZE': 50,
134
+ 'B-PACKAGE_WEIGHT': 51,
135
+ 'I-PACKAGE_WEIGHT': 52,
136
+ }
137
+
138
+
139
  ## Caveats and Recommendations
140
 
141
  - The model may struggle with typos, uncommon ingredients, or unusual phrasing not seen during training.
 
144
 
145
  Here are some example model outputs on the provided text:
146
 
147
+ {example_outputs}