End of training
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: distilbert-base-uncased-finetuned-emotion
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# distilbert-base-uncased-finetuned-emotion
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3068
|
21 |
+
- Accuracy: 0.9085
|
22 |
+
- F1 Score: 0.9086
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 64
|
43 |
+
- eval_batch_size: 64
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 10
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
|
53 |
+
| 0.9641 | 1.0 | 250 | 0.6194 | 0.792 | 0.7819 |
|
54 |
+
| 0.4398 | 2.0 | 500 | 0.3389 | 0.883 | 0.8825 |
|
55 |
+
| 0.258 | 3.0 | 750 | 0.2948 | 0.8945 | 0.8951 |
|
56 |
+
| 0.1744 | 4.0 | 1000 | 0.2841 | 0.9035 | 0.9038 |
|
57 |
+
| 0.132 | 5.0 | 1250 | 0.2937 | 0.8985 | 0.8983 |
|
58 |
+
| 0.1078 | 6.0 | 1500 | 0.2770 | 0.9055 | 0.9054 |
|
59 |
+
| 0.0888 | 7.0 | 1750 | 0.3017 | 0.903 | 0.9028 |
|
60 |
+
| 0.0739 | 8.0 | 2000 | 0.2829 | 0.9095 | 0.9096 |
|
61 |
+
| 0.0611 | 9.0 | 2250 | 0.3062 | 0.91 | 0.9102 |
|
62 |
+
| 0.0506 | 10.0 | 2500 | 0.3068 | 0.9085 | 0.9086 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.41.2
|
68 |
+
- Pytorch 2.3.0+cu121
|
69 |
+
- Tokenizers 0.19.1
|
losses.json
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"loss": 0.9641,
|
4 |
+
"grad_norm": 12.902933120727539,
|
5 |
+
"learning_rate": 1.8e-05,
|
6 |
+
"epoch": 1.0,
|
7 |
+
"step": 250
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"eval_loss": 0.6194158792495728,
|
11 |
+
"eval_accuracy": 0.792,
|
12 |
+
"eval_f1_score": 0.7818567350710909,
|
13 |
+
"eval_runtime": 4.3481,
|
14 |
+
"eval_samples_per_second": 459.97,
|
15 |
+
"eval_steps_per_second": 7.36,
|
16 |
+
"epoch": 1.0,
|
17 |
+
"step": 250
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"loss": 0.4398,
|
21 |
+
"grad_norm": 8.209343910217285,
|
22 |
+
"learning_rate": 1.6000000000000003e-05,
|
23 |
+
"epoch": 2.0,
|
24 |
+
"step": 500
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"eval_loss": 0.33885374665260315,
|
28 |
+
"eval_accuracy": 0.883,
|
29 |
+
"eval_f1_score": 0.8825473908240207,
|
30 |
+
"eval_runtime": 4.3879,
|
31 |
+
"eval_samples_per_second": 455.804,
|
32 |
+
"eval_steps_per_second": 7.293,
|
33 |
+
"epoch": 2.0,
|
34 |
+
"step": 500
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"loss": 0.258,
|
38 |
+
"grad_norm": 7.1059184074401855,
|
39 |
+
"learning_rate": 1.4e-05,
|
40 |
+
"epoch": 3.0,
|
41 |
+
"step": 750
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"eval_loss": 0.2948116958141327,
|
45 |
+
"eval_accuracy": 0.8945,
|
46 |
+
"eval_f1_score": 0.8950761079856652,
|
47 |
+
"eval_runtime": 4.3338,
|
48 |
+
"eval_samples_per_second": 461.493,
|
49 |
+
"eval_steps_per_second": 7.384,
|
50 |
+
"epoch": 3.0,
|
51 |
+
"step": 750
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"loss": 0.1744,
|
55 |
+
"grad_norm": 14.858270645141602,
|
56 |
+
"learning_rate": 1.2e-05,
|
57 |
+
"epoch": 4.0,
|
58 |
+
"step": 1000
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"eval_loss": 0.28408634662628174,
|
62 |
+
"eval_accuracy": 0.9035,
|
63 |
+
"eval_f1_score": 0.9038343567745306,
|
64 |
+
"eval_runtime": 4.2528,
|
65 |
+
"eval_samples_per_second": 470.273,
|
66 |
+
"eval_steps_per_second": 7.524,
|
67 |
+
"epoch": 4.0,
|
68 |
+
"step": 1000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"loss": 0.132,
|
72 |
+
"grad_norm": 10.98675537109375,
|
73 |
+
"learning_rate": 1e-05,
|
74 |
+
"epoch": 5.0,
|
75 |
+
"step": 1250
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"eval_loss": 0.29371485114097595,
|
79 |
+
"eval_accuracy": 0.8985,
|
80 |
+
"eval_f1_score": 0.8982752344158218,
|
81 |
+
"eval_runtime": 4.368,
|
82 |
+
"eval_samples_per_second": 457.874,
|
83 |
+
"eval_steps_per_second": 7.326,
|
84 |
+
"epoch": 5.0,
|
85 |
+
"step": 1250
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"loss": 0.1078,
|
89 |
+
"grad_norm": 1.496416449546814,
|
90 |
+
"learning_rate": 8.000000000000001e-06,
|
91 |
+
"epoch": 6.0,
|
92 |
+
"step": 1500
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"eval_loss": 0.27695581316947937,
|
96 |
+
"eval_accuracy": 0.9055,
|
97 |
+
"eval_f1_score": 0.9053682374738501,
|
98 |
+
"eval_runtime": 4.2619,
|
99 |
+
"eval_samples_per_second": 469.274,
|
100 |
+
"eval_steps_per_second": 7.508,
|
101 |
+
"epoch": 6.0,
|
102 |
+
"step": 1500
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"loss": 0.0888,
|
106 |
+
"grad_norm": 2.4278478622436523,
|
107 |
+
"learning_rate": 6e-06,
|
108 |
+
"epoch": 7.0,
|
109 |
+
"step": 1750
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"eval_loss": 0.3017047643661499,
|
113 |
+
"eval_accuracy": 0.903,
|
114 |
+
"eval_f1_score": 0.9027803797533116,
|
115 |
+
"eval_runtime": 4.3556,
|
116 |
+
"eval_samples_per_second": 459.177,
|
117 |
+
"eval_steps_per_second": 7.347,
|
118 |
+
"epoch": 7.0,
|
119 |
+
"step": 1750
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"loss": 0.0739,
|
123 |
+
"grad_norm": 2.9510045051574707,
|
124 |
+
"learning_rate": 4.000000000000001e-06,
|
125 |
+
"epoch": 8.0,
|
126 |
+
"step": 2000
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"eval_loss": 0.28290167450904846,
|
130 |
+
"eval_accuracy": 0.9095,
|
131 |
+
"eval_f1_score": 0.9096314060750578,
|
132 |
+
"eval_runtime": 4.3333,
|
133 |
+
"eval_samples_per_second": 461.542,
|
134 |
+
"eval_steps_per_second": 7.385,
|
135 |
+
"epoch": 8.0,
|
136 |
+
"step": 2000
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"loss": 0.0611,
|
140 |
+
"grad_norm": 9.680631637573242,
|
141 |
+
"learning_rate": 2.0000000000000003e-06,
|
142 |
+
"epoch": 9.0,
|
143 |
+
"step": 2250
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"eval_loss": 0.306204229593277,
|
147 |
+
"eval_accuracy": 0.91,
|
148 |
+
"eval_f1_score": 0.9101550513849552,
|
149 |
+
"eval_runtime": 4.3144,
|
150 |
+
"eval_samples_per_second": 463.564,
|
151 |
+
"eval_steps_per_second": 7.417,
|
152 |
+
"epoch": 9.0,
|
153 |
+
"step": 2250
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"loss": 0.0506,
|
157 |
+
"grad_norm": 3.266329050064087,
|
158 |
+
"learning_rate": 0.0,
|
159 |
+
"epoch": 10.0,
|
160 |
+
"step": 2500
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"eval_loss": 0.3068402111530304,
|
164 |
+
"eval_accuracy": 0.9085,
|
165 |
+
"eval_f1_score": 0.9086081968965166,
|
166 |
+
"eval_runtime": 4.2835,
|
167 |
+
"eval_samples_per_second": 466.913,
|
168 |
+
"eval_steps_per_second": 7.471,
|
169 |
+
"epoch": 10.0,
|
170 |
+
"step": 2500
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"train_runtime": 1334.5966,
|
174 |
+
"train_samples_per_second": 119.886,
|
175 |
+
"train_steps_per_second": 1.873,
|
176 |
+
"total_flos": 3891507413760000.0,
|
177 |
+
"train_loss": 0.23506236724853516,
|
178 |
+
"epoch": 10.0,
|
179 |
+
"step": 2500
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"eval_loss": 0.3068402111530304,
|
183 |
+
"eval_accuracy": 0.9085,
|
184 |
+
"eval_f1_score": 0.9086081968965166,
|
185 |
+
"eval_runtime": 4.7892,
|
186 |
+
"eval_samples_per_second": 417.606,
|
187 |
+
"eval_steps_per_second": 6.682,
|
188 |
+
"epoch": 10.0,
|
189 |
+
"step": 2500
|
190 |
+
}
|
191 |
+
]
|
metrics.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_loss": 0.3068402111530304,
|
3 |
+
"eval_accuracy": 0.9085,
|
4 |
+
"eval_f1_score": 0.9086081968965166,
|
5 |
+
"eval_runtime": 4.7892,
|
6 |
+
"eval_samples_per_second": 417.606,
|
7 |
+
"eval_steps_per_second": 6.682,
|
8 |
+
"epoch": 10.0
|
9 |
+
}
|
runs/Jul13_03-58-13_152124859d1a/events.out.tfevents.1720843097.152124859d1a.1408.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1a518f832e15c9b8e371617f3f82da7c7dc4d8c6a5730600f1336a2841cb212
|
3 |
+
size 11294
|
runs/Jul13_03-58-13_152124859d1a/events.out.tfevents.1720845740.152124859d1a.1408.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:feae7515bb86469a334511a1b6f3c05bfe650fda4bf1e32b3beaa5842e85296a
|
3 |
+
size 463
|