train PPO on Lunar Lander v2 env
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-lunarlander-v2.zip +3 -0
- ppo-lunarlander-v2/_stable_baselines3_version +1 -0
- ppo-lunarlander-v2/data +95 -0
- ppo-lunarlander-v2/policy.optimizer.pth +3 -0
- ppo-lunarlander-v2/policy.pth +3 -0
- ppo-lunarlander-v2/pytorch_variables.pth +3 -0
- ppo-lunarlander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 279.26 +/- 21.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e2ec82b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e2ec82c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e2ec82ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e2ec82d30>", "_build": "<function ActorCriticPolicy._build at 0x7f7e2ec82dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e2ec82e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e2ec82ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e2ec82f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e2ec86040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e2ec860d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e2ec86160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e2ec861f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7e2ec83270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675950686501913612, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr/F7yDTRy8VUg+Peo74bxyCom9ptW7vQAAgD8AAIA/TWjwvXBClz9pXwe/B9omv7lpEr5Om7K+AAAAAAAAAADznJc9ro2PupZKeDzJmacxLCrVOdkjhjMAAIA/AACAPxNWMj6CbPw+Polwvuzdyr4Ey0k9Cuo2vQAAAAAAAAAAJiDgPVpLuD7Dv0W+F9m4vrmNHLyGxtq9AAAAAAAAAABmSts7FPSFumPAd7vqc4k8NOs0Ou7Rb70AAIA/AACAPxqBtj2rXHU/9zcgPuE5975qBiM+hunZPAAAAAAAAAAAMxWwvJyAED52/ik+J+KIvtS0Rz0Lx0s9AAAAAAAAAAAtDIg+T7ZZP8hN6zyslwO//DW1PsaJFr4AAAAAAAAAAJpjHjzh+IW6oUy3O0ZzTzg3aU+6RXbStgAAgD8AAIA/Zh/jPFz/dbqIUua1CVj5sCq1gDsCXBE1AACAPwAAgD863jY+KRWcPstpQb4J8pu+wjLtOlHpl7sAAAAAAAAAAFqZGj6wM4w/2EcvPq+YHr8MIjs+U7h/vQAAAAAAAAAAmsRoPTWOcj/jv/48wTAEv3hrqz24uuA8AAAAAAAAAACaFRM9jxZXust137befc+x8IYYupr1BDYAAIA/AACAP5r5vToJxEc9OLO+veJSVL6HkI69+fG/OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGGAfnbo7c0CUhpRSlIwBbJRL+IwBdJRHQJxmN5jYqXp1fZQoaAZoCWgPQwjWyRmKu7ZvQJSGlFKUaBVL72gWR0CcZueJpFkQdX2UKGgGaAloD0MIKAr0ibxrcUCUhpRSlGgVS/doFkdAnGdEwrUb1nV9lChoBmgJaA9DCOrKZ3neEHJAlIaUUpRoFUvtaBZHQJxn0tVaOgh1fZQoaAZoCWgPQwgaxAd2vCVyQJSGlFKUaBVLyWgWR0CcZ9C/47A+dX2UKGgGaAloD0MIJPJdSh3rcUCUhpRSlGgVTQsBaBZHQJxoUKiO/+N1fZQoaAZoCWgPQwj3lJwTe0FzQJSGlFKUaBVL2GgWR0CcaKb48EFGdX2UKGgGaAloD0MIQwOxbKajcUCUhpRSlGgVS/5oFkdAnGjrEP1+RnV9lChoBmgJaA9DCP0zg/gA8nJAlIaUUpRoFUv9aBZHQJxpB7sv7Fd1fZQoaAZoCWgPQwhO0CaHz59yQJSGlFKUaBVL9GgWR0CcaY3JxNqQdX2UKGgGaAloD0MIdcx5xr7+cUCUhpRSlGgVS/doFkdAnGmyLyc0+HV9lChoBmgJaA9DCDFgyVWsEm5AlIaUUpRoFUvraBZHQJxqMSXdCVt1fZQoaAZoCWgPQwhE3JxKBspvQJSGlFKUaBVNCAFoFkdAnGpfyoXKsHV9lChoBmgJaA9DCBHHurhNs3BAlIaUUpRoFUvmaBZHQJxrsN5MURF1fZQoaAZoCWgPQwgyO4veKTVvQJSGlFKUaBVL2WgWR0CcbA8rI5o5dX2UKGgGaAloD0MIcHfWbjuRcUCUhpRSlGgVS/FoFkdAnGwl2FFlTXV9lChoBmgJaA9DCMY0070ORXNAlIaUUpRoFUvYaBZHQJxsjllsguB1fZQoaAZoCWgPQwgWTz3S4KlxQJSGlFKUaBVL7WgWR0Ccbg4smOU/dX2UKGgGaAloD0MIq7LvimC3cUCUhpRSlGgVS/poFkdAnG8PQ0GeMHV9lChoBmgJaA9DCAKbc/AMzXFAlIaUUpRoFUvOaBZHQJxvUSBbwBp1fZQoaAZoCWgPQwjGi4UhMn9zQJSGlFKUaBVL3GgWR0Ccb1z67/XHdX2UKGgGaAloD0MI+rMfKWKfckCUhpRSlGgVS9VoFkdAnG/kvoNd7nV9lChoBmgJaA9DCFSnA1lPiXJAlIaUUpRoFU0RAWgWR0CccIpHZsbedX2UKGgGaAloD0MI5lsf1hsMcECUhpRSlGgVTRQBaBZHQJxwo0FbFCN1fZQoaAZoCWgPQwjtZHCU/BhyQJSGlFKUaBVL82gWR0CccNoB7u2JdX2UKGgGaAloD0MIzy9K0B+0cECUhpRSlGgVS+BoFkdAnHDZ3C9AX3V9lChoBmgJaA9DCA+Z8iFo4XBAlIaUUpRoFUvZaBZHQJxxgHZ9NN91fZQoaAZoCWgPQwh5BDdStvptQJSGlFKUaBVL9mgWR0CccbexOclPdX2UKGgGaAloD0MIijpzD0k6cUCUhpRSlGgVTQkBaBZHQJxy+/BWPtF1fZQoaAZoCWgPQwgqc/ON6JBvQJSGlFKUaBVL0mgWR0CcczR3NcGDdX2UKGgGaAloD0MIKjqSy/+UcUCUhpRSlGgVS8hoFkdAnKbsFlkH2XV9lChoBmgJaA9DCOOJIM5Dm3FAlIaUUpRoFUvyaBZHQJynVyeZof11fZQoaAZoCWgPQwi1a0Ja45NwQJSGlFKUaBVNBgFoFkdAnKhqD0163XV9lChoBmgJaA9DCPVjk/yIiXFAlIaUUpRoFUvRaBZHQJypmMJhOQB1fZQoaAZoCWgPQwj4cMlx50VxQJSGlFKUaBVL9WgWR0CcqekDZDiPdX2UKGgGaAloD0MIZ341BwiGcUCUhpRSlGgVS9VoFkdAnKoEaAFxGXV9lChoBmgJaA9DCGzQl94++HJAlIaUUpRoFUvcaBZHQJyqMkRjBmB1fZQoaAZoCWgPQwiM17yqc+ZxQJSGlFKUaBVL7WgWR0Ccq1+S8rZrdX2UKGgGaAloD0MII/jfSjb3cUCUhpRSlGgVS+BoFkdAnKun2ys0YXV9lChoBmgJaA9DCJS9pZzva3FAlIaUUpRoFUvFaBZHQJyr18stkFx1fZQoaAZoCWgPQwg2sFWCBdhwQJSGlFKUaBVL7GgWR0Ccq/iCJ40NdX2UKGgGaAloD0MIGQCquPFScECUhpRSlGgVS/RoFkdAnKyNGNJe3XV9lChoBmgJaA9DCOJ2aFhM+nFAlIaUUpRoFUv3aBZHQJytZoDgZTB1fZQoaAZoCWgPQwhFK/cCczVyQJSGlFKUaBVNDgFoFkdAnK2F3MY/FHV9lChoBmgJaA9DCNYZ3xdXoXJAlIaUUpRoFUvsaBZHQJyu1r+Haex1fZQoaAZoCWgPQwiJz51gP1JzQJSGlFKUaBVL8mgWR0CcrtfAsTWYdX2UKGgGaAloD0MIKH6MuWsOckCUhpRSlGgVS+loFkdAnK72l/H5rXV9lChoBmgJaA9DCNQMqaJ4nHJAlIaUUpRoFUvoaBZHQJyvbZUT+Nt1fZQoaAZoCWgPQwguxsA6TttzQJSGlFKUaBVLzGgWR0CcsQbQC0WudX2UKGgGaAloD0MIlIRE2gb1cUCUhpRSlGgVS/RoFkdAnLE3Yg7o0XV9lChoBmgJaA9DCOLl6VyRTHJAlIaUUpRoFUvPaBZHQJyxeDbrTph1fZQoaAZoCWgPQwiuZp3xfSVNQJSGlFKUaBVLuGgWR0CcsoF36hxpdX2UKGgGaAloD0MIYB3HD9XMckCUhpRSlGgVS+5oFkdAnLL7depn6HV9lChoBmgJaA9DCC9rYoHvD3FAlIaUUpRoFU0FAWgWR0Ccs6iDM/yHdX2UKGgGaAloD0MI6PnTRrUJc0CUhpRSlGgVS+toFkdAnLQq4YrJ83V9lChoBmgJaA9DCFkzMsjdA3FAlIaUUpRoFUviaBZHQJy0V9d/rjZ1fZQoaAZoCWgPQwhH5/wUh6VxQJSGlFKUaBVL92gWR0CctUL5RCQcdX2UKGgGaAloD0MILCl3n+PLT0CUhpRSlGgVS69oFkdAnLV0BGQSz3V9lChoBmgJaA9DCCrmIOhoGHJAlIaUUpRoFUvcaBZHQJy12pKjBVN1fZQoaAZoCWgPQwiPOc/YF1txQJSGlFKUaBVLyWgWR0Cctoq7iADrdX2UKGgGaAloD0MI+dhdoCRMckCUhpRSlGgVTQgBaBZHQJy2ifg75mB1fZQoaAZoCWgPQwgFU82spZBwQJSGlFKUaBVL9GgWR0CctqWXC0ngdX2UKGgGaAloD0MIARk6dlB7ckCUhpRSlGgVS9toFkdAnLcKslsxf3V9lChoBmgJaA9DCFJflnZqanFAlIaUUpRoFUvxaBZHQJy4H2ugYgt1fZQoaAZoCWgPQwg8UKc8+m1wQJSGlFKUaBVL2mgWR0CcuJgYP5HmdX2UKGgGaAloD0MIBrzMsFE8UECUhpRSlGgVS7BoFkdAnLjWax5cDHV9lChoBmgJaA9DCChlUkPbA3BAlIaUUpRoFUvbaBZHQJy46cx0uDl1fZQoaAZoCWgPQwhpVrYPua5wQJSGlFKUaBVL5mgWR0CcuQHWz4UOdX2UKGgGaAloD0MI/fUKC67IckCUhpRSlGgVS+JoFkdAnLmtjPOY6XV9lChoBmgJaA9DCGBZaVKKcnJAlIaUUpRoFUvmaBZHQJy674O+ZgJ1fZQoaAZoCWgPQwjjcVEtIhtwQJSGlFKUaBVL/mgWR0CcuxWPcSGrdX2UKGgGaAloD0MIL6UuGceHcUCUhpRSlGgVS9loFkdAnLs8kIHC43V9lChoBmgJaA9DCAJjfQOTXW9AlIaUUpRoFUv7aBZHQJy7VwR5C4V1fZQoaAZoCWgPQwhw6ZjzTChzQJSGlFKUaBVL22gWR0CcvBuJk5IZdX2UKGgGaAloD0MIIlFoWXdWbUCUhpRSlGgVS/toFkdAnLwtNWU8m3V9lChoBmgJaA9DCOp5NxbUeXFAlIaUUpRoFUvcaBZHQJy8MX2ugYh1fZQoaAZoCWgPQwjlfoeiQCZvQJSGlFKUaBVL42gWR0CcvEwh4dIYdX2UKGgGaAloD0MI28AdqNOicECUhpRSlGgVS/doFkdAnLxV0Lc9GXV9lChoBmgJaA9DCOXwSSdSKnJAlIaUUpRoFUvzaBZHQJy886zVtoB1fZQoaAZoCWgPQwiAttWss0VwQJSGlFKUaBVL32gWR0CcvVYW+GoKdX2UKGgGaAloD0MIWDfeHRk0cUCUhpRSlGgVS9RoFkdAnL2ukgwGnnV9lChoBmgJaA9DCMAEbt2NBnNAlIaUUpRoFUvsaBZHQJy9+W1MM7V1fZQoaAZoCWgPQwgLCK2H71ZwQJSGlFKUaBVL4GgWR0CcvhKpkwvhdX2UKGgGaAloD0MIX0ax3FKBcUCUhpRSlGgVS+xoFkdAnL46sySFG3V9lChoBmgJaA9DCIcW2c537HFAlIaUUpRoFUviaBZHQJy+uQ+2Vml1fZQoaAZoCWgPQwjBO/n0mNByQJSGlFKUaBVLzWgWR0Ccv6q94/u9dX2UKGgGaAloD0MI8n1xqYrvcUCUhpRSlGgVS9RoFkdAnL+x6fJ3gXV9lChoBmgJaA9DCDzB/uucLXJAlIaUUpRoFUvVaBZHQJy/+2RaHKx1fZQoaAZoCWgPQwiKPbSPlVFwQJSGlFKUaBVL52gWR0CcwAVt4zJqdX2UKGgGaAloD0MIvth78YXncECUhpRSlGgVS9VoFkdAnMCqaoddV3V9lChoBmgJaA9DCPxUFRpIgXBAlIaUUpRoFUvMaBZHQJzAqylenht1fZQoaAZoCWgPQwgJ4GbxYndzQJSGlFKUaBVL3WgWR0CcwQms/6frdX2UKGgGaAloD0MITWa8rXQKcECUhpRSlGgVS+loFkdAnME10PpY93V9lChoBmgJaA9DCAb2mEjppW5AlIaUUpRoFUvoaBZHQJzB+9wm3OR1fZQoaAZoCWgPQwiRm+EGvFBxQJSGlFKUaBVNDQFoFkdAnMIB6v7m+3V9lChoBmgJaA9DCIHtYMQ+eXFAlIaUUpRoFUvsaBZHQJzCcvzvqkd1fZQoaAZoCWgPQwhHjQkx131zQJSGlFKUaBVL2WgWR0CcwtD28IzFdX2UKGgGaAloD0MIvDsyVlsMcUCUhpRSlGgVS/FoFkdAnMLruhK15XV9lChoBmgJaA9DCCh9IeR8G3NAlIaUUpRoFUvyaBZHQJzDRMwlByF1fZQoaAZoCWgPQwglkuhlFB84QJSGlFKUaBVLp2gWR0Ccw7SLqD9PdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-lunarlander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f01069b35af84577a48f8798dd05aa31c68dcbf9fcd12aba557db2abbb74e3b1
|
3 |
+
size 147305
|
ppo-lunarlander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-lunarlander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e2ec82b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e2ec82c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e2ec82ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e2ec82d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7e2ec82dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7e2ec82e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e2ec82ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e2ec82f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7e2ec86040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e2ec860d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e2ec86160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e2ec861f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7e2ec83270>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675950686501913612,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr/F7yDTRy8VUg+Peo74bxyCom9ptW7vQAAgD8AAIA/TWjwvXBClz9pXwe/B9omv7lpEr5Om7K+AAAAAAAAAADznJc9ro2PupZKeDzJmacxLCrVOdkjhjMAAIA/AACAPxNWMj6CbPw+Polwvuzdyr4Ey0k9Cuo2vQAAAAAAAAAAJiDgPVpLuD7Dv0W+F9m4vrmNHLyGxtq9AAAAAAAAAABmSts7FPSFumPAd7vqc4k8NOs0Ou7Rb70AAIA/AACAPxqBtj2rXHU/9zcgPuE5975qBiM+hunZPAAAAAAAAAAAMxWwvJyAED52/ik+J+KIvtS0Rz0Lx0s9AAAAAAAAAAAtDIg+T7ZZP8hN6zyslwO//DW1PsaJFr4AAAAAAAAAAJpjHjzh+IW6oUy3O0ZzTzg3aU+6RXbStgAAgD8AAIA/Zh/jPFz/dbqIUua1CVj5sCq1gDsCXBE1AACAPwAAgD863jY+KRWcPstpQb4J8pu+wjLtOlHpl7sAAAAAAAAAAFqZGj6wM4w/2EcvPq+YHr8MIjs+U7h/vQAAAAAAAAAAmsRoPTWOcj/jv/48wTAEv3hrqz24uuA8AAAAAAAAAACaFRM9jxZXust137befc+x8IYYupr1BDYAAIA/AACAP5r5vToJxEc9OLO+veJSVL6HkI69+fG/OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGGAfnbo7c0CUhpRSlIwBbJRL+IwBdJRHQJxmN5jYqXp1fZQoaAZoCWgPQwjWyRmKu7ZvQJSGlFKUaBVL72gWR0CcZueJpFkQdX2UKGgGaAloD0MIKAr0ibxrcUCUhpRSlGgVS/doFkdAnGdEwrUb1nV9lChoBmgJaA9DCOrKZ3neEHJAlIaUUpRoFUvtaBZHQJxn0tVaOgh1fZQoaAZoCWgPQwgaxAd2vCVyQJSGlFKUaBVLyWgWR0CcZ9C/47A+dX2UKGgGaAloD0MIJPJdSh3rcUCUhpRSlGgVTQsBaBZHQJxoUKiO/+N1fZQoaAZoCWgPQwj3lJwTe0FzQJSGlFKUaBVL2GgWR0CcaKb48EFGdX2UKGgGaAloD0MIQwOxbKajcUCUhpRSlGgVS/5oFkdAnGjrEP1+RnV9lChoBmgJaA9DCP0zg/gA8nJAlIaUUpRoFUv9aBZHQJxpB7sv7Fd1fZQoaAZoCWgPQwhO0CaHz59yQJSGlFKUaBVL9GgWR0CcaY3JxNqQdX2UKGgGaAloD0MIdcx5xr7+cUCUhpRSlGgVS/doFkdAnGmyLyc0+HV9lChoBmgJaA9DCDFgyVWsEm5AlIaUUpRoFUvraBZHQJxqMSXdCVt1fZQoaAZoCWgPQwhE3JxKBspvQJSGlFKUaBVNCAFoFkdAnGpfyoXKsHV9lChoBmgJaA9DCBHHurhNs3BAlIaUUpRoFUvmaBZHQJxrsN5MURF1fZQoaAZoCWgPQwgyO4veKTVvQJSGlFKUaBVL2WgWR0CcbA8rI5o5dX2UKGgGaAloD0MIcHfWbjuRcUCUhpRSlGgVS/FoFkdAnGwl2FFlTXV9lChoBmgJaA9DCMY0070ORXNAlIaUUpRoFUvYaBZHQJxsjllsguB1fZQoaAZoCWgPQwgWTz3S4KlxQJSGlFKUaBVL7WgWR0Ccbg4smOU/dX2UKGgGaAloD0MIq7LvimC3cUCUhpRSlGgVS/poFkdAnG8PQ0GeMHV9lChoBmgJaA9DCAKbc/AMzXFAlIaUUpRoFUvOaBZHQJxvUSBbwBp1fZQoaAZoCWgPQwjGi4UhMn9zQJSGlFKUaBVL3GgWR0Ccb1z67/XHdX2UKGgGaAloD0MI+rMfKWKfckCUhpRSlGgVS9VoFkdAnG/kvoNd7nV9lChoBmgJaA9DCFSnA1lPiXJAlIaUUpRoFU0RAWgWR0CccIpHZsbedX2UKGgGaAloD0MI5lsf1hsMcECUhpRSlGgVTRQBaBZHQJxwo0FbFCN1fZQoaAZoCWgPQwjtZHCU/BhyQJSGlFKUaBVL82gWR0CccNoB7u2JdX2UKGgGaAloD0MIzy9K0B+0cECUhpRSlGgVS+BoFkdAnHDZ3C9AX3V9lChoBmgJaA9DCA+Z8iFo4XBAlIaUUpRoFUvZaBZHQJxxgHZ9NN91fZQoaAZoCWgPQwh5BDdStvptQJSGlFKUaBVL9mgWR0CccbexOclPdX2UKGgGaAloD0MIijpzD0k6cUCUhpRSlGgVTQkBaBZHQJxy+/BWPtF1fZQoaAZoCWgPQwgqc/ON6JBvQJSGlFKUaBVL0mgWR0CcczR3NcGDdX2UKGgGaAloD0MIKjqSy/+UcUCUhpRSlGgVS8hoFkdAnKbsFlkH2XV9lChoBmgJaA9DCOOJIM5Dm3FAlIaUUpRoFUvyaBZHQJynVyeZof11fZQoaAZoCWgPQwi1a0Ja45NwQJSGlFKUaBVNBgFoFkdAnKhqD0163XV9lChoBmgJaA9DCPVjk/yIiXFAlIaUUpRoFUvRaBZHQJypmMJhOQB1fZQoaAZoCWgPQwj4cMlx50VxQJSGlFKUaBVL9WgWR0CcqekDZDiPdX2UKGgGaAloD0MIZ341BwiGcUCUhpRSlGgVS9VoFkdAnKoEaAFxGXV9lChoBmgJaA9DCGzQl94++HJAlIaUUpRoFUvcaBZHQJyqMkRjBmB1fZQoaAZoCWgPQwiM17yqc+ZxQJSGlFKUaBVL7WgWR0Ccq1+S8rZrdX2UKGgGaAloD0MII/jfSjb3cUCUhpRSlGgVS+BoFkdAnKun2ys0YXV9lChoBmgJaA9DCJS9pZzva3FAlIaUUpRoFUvFaBZHQJyr18stkFx1fZQoaAZoCWgPQwg2sFWCBdhwQJSGlFKUaBVL7GgWR0Ccq/iCJ40NdX2UKGgGaAloD0MIGQCquPFScECUhpRSlGgVS/RoFkdAnKyNGNJe3XV9lChoBmgJaA9DCOJ2aFhM+nFAlIaUUpRoFUv3aBZHQJytZoDgZTB1fZQoaAZoCWgPQwhFK/cCczVyQJSGlFKUaBVNDgFoFkdAnK2F3MY/FHV9lChoBmgJaA9DCNYZ3xdXoXJAlIaUUpRoFUvsaBZHQJyu1r+Haex1fZQoaAZoCWgPQwiJz51gP1JzQJSGlFKUaBVL8mgWR0CcrtfAsTWYdX2UKGgGaAloD0MIKH6MuWsOckCUhpRSlGgVS+loFkdAnK72l/H5rXV9lChoBmgJaA9DCNQMqaJ4nHJAlIaUUpRoFUvoaBZHQJyvbZUT+Nt1fZQoaAZoCWgPQwguxsA6TttzQJSGlFKUaBVLzGgWR0CcsQbQC0WudX2UKGgGaAloD0MIlIRE2gb1cUCUhpRSlGgVS/RoFkdAnLE3Yg7o0XV9lChoBmgJaA9DCOLl6VyRTHJAlIaUUpRoFUvPaBZHQJyxeDbrTph1fZQoaAZoCWgPQwiuZp3xfSVNQJSGlFKUaBVLuGgWR0CcsoF36hxpdX2UKGgGaAloD0MIYB3HD9XMckCUhpRSlGgVS+5oFkdAnLL7depn6HV9lChoBmgJaA9DCC9rYoHvD3FAlIaUUpRoFU0FAWgWR0Ccs6iDM/yHdX2UKGgGaAloD0MI6PnTRrUJc0CUhpRSlGgVS+toFkdAnLQq4YrJ83V9lChoBmgJaA9DCFkzMsjdA3FAlIaUUpRoFUviaBZHQJy0V9d/rjZ1fZQoaAZoCWgPQwhH5/wUh6VxQJSGlFKUaBVL92gWR0CctUL5RCQcdX2UKGgGaAloD0MILCl3n+PLT0CUhpRSlGgVS69oFkdAnLV0BGQSz3V9lChoBmgJaA9DCCrmIOhoGHJAlIaUUpRoFUvcaBZHQJy12pKjBVN1fZQoaAZoCWgPQwiPOc/YF1txQJSGlFKUaBVLyWgWR0Cctoq7iADrdX2UKGgGaAloD0MI+dhdoCRMckCUhpRSlGgVTQgBaBZHQJy2ifg75mB1fZQoaAZoCWgPQwgFU82spZBwQJSGlFKUaBVL9GgWR0CctqWXC0ngdX2UKGgGaAloD0MIARk6dlB7ckCUhpRSlGgVS9toFkdAnLcKslsxf3V9lChoBmgJaA9DCFJflnZqanFAlIaUUpRoFUvxaBZHQJy4H2ugYgt1fZQoaAZoCWgPQwg8UKc8+m1wQJSGlFKUaBVL2mgWR0CcuJgYP5HmdX2UKGgGaAloD0MIBrzMsFE8UECUhpRSlGgVS7BoFkdAnLjWax5cDHV9lChoBmgJaA9DCChlUkPbA3BAlIaUUpRoFUvbaBZHQJy46cx0uDl1fZQoaAZoCWgPQwhpVrYPua5wQJSGlFKUaBVL5mgWR0CcuQHWz4UOdX2UKGgGaAloD0MI/fUKC67IckCUhpRSlGgVS+JoFkdAnLmtjPOY6XV9lChoBmgJaA9DCGBZaVKKcnJAlIaUUpRoFUvmaBZHQJy674O+ZgJ1fZQoaAZoCWgPQwjjcVEtIhtwQJSGlFKUaBVL/mgWR0CcuxWPcSGrdX2UKGgGaAloD0MIL6UuGceHcUCUhpRSlGgVS9loFkdAnLs8kIHC43V9lChoBmgJaA9DCAJjfQOTXW9AlIaUUpRoFUv7aBZHQJy7VwR5C4V1fZQoaAZoCWgPQwhw6ZjzTChzQJSGlFKUaBVL22gWR0CcvBuJk5IZdX2UKGgGaAloD0MIIlFoWXdWbUCUhpRSlGgVS/toFkdAnLwtNWU8m3V9lChoBmgJaA9DCOp5NxbUeXFAlIaUUpRoFUvcaBZHQJy8MX2ugYh1fZQoaAZoCWgPQwjlfoeiQCZvQJSGlFKUaBVL42gWR0CcvEwh4dIYdX2UKGgGaAloD0MI28AdqNOicECUhpRSlGgVS/doFkdAnLxV0Lc9GXV9lChoBmgJaA9DCOXwSSdSKnJAlIaUUpRoFUvzaBZHQJy886zVtoB1fZQoaAZoCWgPQwiAttWss0VwQJSGlFKUaBVL32gWR0CcvVYW+GoKdX2UKGgGaAloD0MIWDfeHRk0cUCUhpRSlGgVS9RoFkdAnL2ukgwGnnV9lChoBmgJaA9DCMAEbt2NBnNAlIaUUpRoFUvsaBZHQJy9+W1MM7V1fZQoaAZoCWgPQwgLCK2H71ZwQJSGlFKUaBVL4GgWR0CcvhKpkwvhdX2UKGgGaAloD0MIX0ax3FKBcUCUhpRSlGgVS+xoFkdAnL46sySFG3V9lChoBmgJaA9DCIcW2c537HFAlIaUUpRoFUviaBZHQJy+uQ+2Vml1fZQoaAZoCWgPQwjBO/n0mNByQJSGlFKUaBVLzWgWR0Ccv6q94/u9dX2UKGgGaAloD0MI8n1xqYrvcUCUhpRSlGgVS9RoFkdAnL+x6fJ3gXV9lChoBmgJaA9DCDzB/uucLXJAlIaUUpRoFUvVaBZHQJy/+2RaHKx1fZQoaAZoCWgPQwiKPbSPlVFwQJSGlFKUaBVL52gWR0CcwAVt4zJqdX2UKGgGaAloD0MIvth78YXncECUhpRSlGgVS9VoFkdAnMCqaoddV3V9lChoBmgJaA9DCPxUFRpIgXBAlIaUUpRoFUvMaBZHQJzAqylenht1fZQoaAZoCWgPQwgJ4GbxYndzQJSGlFKUaBVL3WgWR0CcwQms/6frdX2UKGgGaAloD0MITWa8rXQKcECUhpRSlGgVS+loFkdAnME10PpY93V9lChoBmgJaA9DCAb2mEjppW5AlIaUUpRoFUvoaBZHQJzB+9wm3OR1fZQoaAZoCWgPQwiRm+EGvFBxQJSGlFKUaBVNDQFoFkdAnMIB6v7m+3V9lChoBmgJaA9DCIHtYMQ+eXFAlIaUUpRoFUvsaBZHQJzCcvzvqkd1fZQoaAZoCWgPQwhHjQkx131zQJSGlFKUaBVL2WgWR0CcwtD28IzFdX2UKGgGaAloD0MIvDsyVlsMcUCUhpRSlGgVS/FoFkdAnMLruhK15XV9lChoBmgJaA9DCCh9IeR8G3NAlIaUUpRoFUvyaBZHQJzDRMwlByF1fZQoaAZoCWgPQwglkuhlFB84QJSGlFKUaBVLp2gWR0Ccw7SLqD9PdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 620,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-lunarlander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:259828c8cc885440d06928b8159dc48e0ef3b345b728ff27a14f3f4d459375f8
|
3 |
+
size 87929
|
ppo-lunarlander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36fd72967d4bbf52757a6ea910f389735e79f2fdb6e1afae3d8c7f75cf07391a
|
3 |
+
size 43393
|
ppo-lunarlander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-lunarlander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (209 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 279.2602627332035, "std_reward": 21.604419371514403, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T14:30:13.134837"}
|