Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.55 +/- 0.16
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c41dbff2f365861e04deee957570ac015baf38abb1e85726aea261e238c819e
|
3 |
+
size 109536
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -46,19 +48,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3a20630670>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3a2062afc0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1680961036661240943,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5rG7PsFyQ70NRB0/5rG7PsFyQ70NRB0/5rG7PsFyQ70NRB0/5rG7PsFyQ70NRB0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKBoGPyvpz75pMDa+vm01v9oyBL5o92i/9ASqv+1+pb1gRdo+k7xmPgG5y7/RPd6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADmsbs+wXJDvQ1EHT8bmVQ9gl4TvBY1XT3msbs+wXJDvQ1EHT8bmVQ9gl4TvBY1XT3msbs+wXJDvQ1EHT8bmVQ9gl4TvBY1XT3msbs+wXJDvQ1EHT8bmVQ9gl4TvBY1XT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.36659163 -0.04771686 0.6143196 ]\n [ 0.36659163 -0.04771686 0.6143196 ]\n [ 0.36659163 -0.04771686 0.6143196 ]\n [ 0.36659163 -0.04771686 0.6143196 ]]",
|
62 |
+
"desired_goal": "[[ 0.5238366 -0.4060758 -0.17791905]\n [-0.7087058 -0.12910023 -0.9100251 ]\n [-1.3282762 -0.0808085 0.42631054]\n [ 0.22532873 -1.5915834 -1.7362615 ]]",
|
63 |
+
"observation": "[[ 0.36659163 -0.04771686 0.6143196 0.05190383 -0.0089947 0.0540057 ]\n [ 0.36659163 -0.04771686 0.6143196 0.05190383 -0.0089947 0.0540057 ]\n [ 0.36659163 -0.04771686 0.6143196 0.05190383 -0.0089947 0.0540057 ]\n [ 0.36659163 -0.04771686 0.6143196 0.05190383 -0.0089947 0.0540057 ]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzXXWPT8Dmr1RWFk878rwPXvn5b3YjIU9gCSQuh5ODj1zzpU+ZFyEuzA2Fb6tTh0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 0.10471687 -0.0752015 0.01326569]\n [ 0.11757457 -0.11225792 0.06521004]\n [-0.00109972 0.03474247 0.2925907 ]\n [-0.00403933 -0.14571452 0.15362044]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINzP60XDK2L+UhpRSlIwBbJRLMowBdJRHQKhYkLSeAd51fZQoaAZoCWgPQwhQcLGiBtPRv5SGlFKUaBVLMmgWR0CoWFOFpPAPdX2UKGgGaAloD0MI9zqpL0t787+UhpRSlGgVSzJoFkdAqFgDcXWOInV9lChoBmgJaA9DCPWCT3PyIsm/lIaUUpRoFUsyaBZHQKhXws4DLbJ1fZQoaAZoCWgPQwjiPnJr0m3Rv5SGlFKUaBVLMmgWR0CoWZYwAU+LdX2UKGgGaAloD0MIXRq/8EqS57+UhpRSlGgVSzJoFkdAqFlZK8L8aXV9lChoBmgJaA9DCDCeQUP/BN2/lIaUUpRoFUsyaBZHQKhZCTRIBil1fZQoaAZoCWgPQwi9UStM3+viv5SGlFKUaBVLMmgWR0CoWMiqhlDndX2UKGgGaAloD0MI7pbkgF1N2b+UhpRSlGgVSzJoFkdAqFqgLofSyHV9lChoBmgJaA9DCC2wx0RKs+C/lIaUUpRoFUsyaBZHQKhaYv/zasZ1fZQoaAZoCWgPQwgs1JrmHafgv5SGlFKUaBVLMmgWR0CoWhMaS9uhdX2UKGgGaAloD0MIXi13ZoLh2b+UhpRSlGgVSzJoFkdAqFnSshgVoHV9lChoBmgJaA9DCL68APvoVOa/lIaUUpRoFUsyaBZHQKhbsOBDohZ1fZQoaAZoCWgPQwih2Aqalljgv5SGlFKUaBVLMmgWR0CoW3O3+dbxdX2UKGgGaAloD0MI8ghupGyR17+UhpRSlGgVSzJoFkdAqFsjvJA+p3V9lChoBmgJaA9DCKchqvBneNu/lIaUUpRoFUsyaBZHQKha4zSkTHt1fZQoaAZoCWgPQwgMHqZ9c3/Tv5SGlFKUaBVLMmgWR0CoXK0sFt9AdX2UKGgGaAloD0MIC+2cZoF2zb+UhpRSlGgVSzJoFkdAqFxv5eqrBHV9lChoBmgJaA9DCGKFWz6SkuK/lIaUUpRoFUsyaBZHQKhcIBUaQ3h1fZQoaAZoCWgPQwh9I7pnXaPdv5SGlFKUaBVLMmgWR0CoW9+mFajfdX2UKGgGaAloD0MI1/uNdtzw1L+UhpRSlGgVSzJoFkdAqF2vkWAPNHV9lChoBmgJaA9DCDAvwD46ddu/lIaUUpRoFUsyaBZHQKhdcn/kvK51fZQoaAZoCWgPQwgCgc6kTdXXv5SGlFKUaBVLMmgWR0CoXSK8L8aXdX2UKGgGaAloD0MI51CGqphK2r+UhpRSlGgVSzJoFkdAqFziNKh+OXV9lChoBmgJaA9DCNE7FXDP88e/lIaUUpRoFUsyaBZHQKheupsoDxN1fZQoaAZoCWgPQwiM+E7MejHbv5SGlFKUaBVLMmgWR0CoXn2tU4rCdX2UKGgGaAloD0MIoUliSbn72b+UhpRSlGgVSzJoFkdAqF4ttoBaLXV9lChoBmgJaA9DCBHEeTiB6eK/lIaUUpRoFUsyaBZHQKhd7WGyon91fZQoaAZoCWgPQwgAcsKE0aznv5SGlFKUaBVLMmgWR0CoX8TyJ9ApdX2UKGgGaAloD0MIW7G/7J6877+UhpRSlGgVSzJoFkdAqF+H6Eal13V9lChoBmgJaA9DCHOCNjl80s2/lIaUUpRoFUsyaBZHQKhfN9qk/KR1fZQoaAZoCWgPQwixUGuad5zdv5SGlFKUaBVLMmgWR0CoXvdd3SrpdX2UKGgGaAloD0MIGF5J8lzf6L+UhpRSlGgVSzJoFkdAqGDF/jKgZnV9lChoBmgJaA9DCKVN1T2yOem/lIaUUpRoFUsyaBZHQKhgiOQyRCB1fZQoaAZoCWgPQwjQgHozaj7vv5SGlFKUaBVLMmgWR0CoYDka2nbZdX2UKGgGaAloD0MIaTf6mA8I0r+UhpRSlGgVSzJoFkdAqF/4fMfRu3V9lChoBmgJaA9DCA/vObAcIeu/lIaUUpRoFUsyaBZHQKhh0f9P1th1fZQoaAZoCWgPQwhe1VktsMfbv5SGlFKUaBVLMmgWR0CoYZUbcXWOdX2UKGgGaAloD0MIDhR4J58e4L+UhpRSlGgVSzJoFkdAqGFFS/CZW3V9lChoBmgJaA9DCAPS/gdYK+i/lIaUUpRoFUsyaBZHQKhhBNs3yZt1fZQoaAZoCWgPQwiKVYMwt3vqv5SGlFKUaBVLMmgWR0CoYvr+o99udX2UKGgGaAloD0MIa2EW2jnN4r+UhpRSlGgVSzJoFkdAqGK+sLfDUHV9lChoBmgJaA9DCChhpu1fWdu/lIaUUpRoFUsyaBZHQKhibtEXtSh1fZQoaAZoCWgPQwhmEYqtoOniv5SGlFKUaBVLMmgWR0CoYi4dQwbmdX2UKGgGaAloD0MIKCuGqwMg4L+UhpRSlGgVSzJoFkdAqGP9bqyGBXV9lChoBmgJaA9DCCv52F2gJOC/lIaUUpRoFUsyaBZHQKhjwGTs6aN1fZQoaAZoCWgPQwhe1sQCX1Hiv5SGlFKUaBVLMmgWR0CoY3BC+lCUdX2UKGgGaAloD0MI7YMsCyZ+7L+UhpRSlGgVSzJoFkdAqGMvlyR0VHV9lChoBmgJaA9DCIofY+5aQtW/lIaUUpRoFUsyaBZHQKhlJ/o7muF1fZQoaAZoCWgPQwjGppVCIJfTv5SGlFKUaBVLMmgWR0CoZOuCf6GhdX2UKGgGaAloD0MIc7nBUIcV67+UhpRSlGgVSzJoFkdAqGSchV2ic3V9lChoBmgJaA9DCChGlsyxPOC/lIaUUpRoFUsyaBZHQKhkXGnXNC91fZQoaAZoCWgPQwgdOj3vxoLbv5SGlFKUaBVLMmgWR0CoZswG4ZuRdX2UKGgGaAloD0MIBwySPq2i4r+UhpRSlGgVSzJoFkdAqGaPu9eyA3V9lChoBmgJaA9DCLotkQvO4OW/lIaUUpRoFUsyaBZHQKhmQHHFPzp1fZQoaAZoCWgPQwhEigESTaDMv5SGlFKUaBVLMmgWR0CoZgB9Cu2adX2UKGgGaAloD0MIjGSPUDOk4L+UhpRSlGgVSzJoFkdAqGh3jMmnfnV9lChoBmgJaA9DCOnwEMZP4+e/lIaUUpRoFUsyaBZHQKhoO2sq8UV1fZQoaAZoCWgPQwjlJ9U+HQ/iv5SGlFKUaBVLMmgWR0CoZ+w+dK/VdX2UKGgGaAloD0MIO6jEdYwr3r+UhpRSlGgVSzJoFkdAqGeszl90BHV9lChoBmgJaA9DCOkoB7MJMNi/lIaUUpRoFUsyaBZHQKhqIdGRV6x1fZQoaAZoCWgPQwjUKvpDM0/mv5SGlFKUaBVLMmgWR0CoaeWWIGhVdX2UKGgGaAloD0MIFEIHXcIh5r+UhpRSlGgVSzJoFkdAqGmWVmjCYXV9lChoBmgJaA9DCBiWP98WLOG/lIaUUpRoFUsyaBZHQKhpVoSteUp1fZQoaAZoCWgPQwhig4WTNP/hv5SGlFKUaBVLMmgWR0Coa+Zv99+gdX2UKGgGaAloD0MIP+YDAp1J17+UhpRSlGgVSzJoFkdAqGuqjxkNF3V9lChoBmgJaA9DCFCm0eRiDPK/lIaUUpRoFUsyaBZHQKhrWx1PnCB1fZQoaAZoCWgPQwhRFVPpJ5zcv5SGlFKUaBVLMmgWR0CoaxuRLbpNdX2UKGgGaAloD0MIhPV/DvNl5b+UhpRSlGgVSzJoFkdAqG3vcer+53V9lChoBmgJaA9DCF+X4T/dQOu/lIaUUpRoFUsyaBZHQKhttWKdhAp1fZQoaAZoCWgPQwhgWP58W7DTv5SGlFKUaBVLMmgWR0CobWY6fapQdX2UKGgGaAloD0MImpfD7jsG6r+UhpRSlGgVSzJoFkdAqG0myeI2wXV9lChoBmgJaA9DCNxGA3gLJOu/lIaUUpRoFUsyaBZHQKhvT09yLht1fZQoaAZoCWgPQwgaFw6EZIHmv5SGlFKUaBVLMmgWR0CobxI7Njb0dX2UKGgGaAloD0MIraOqCaLu27+UhpRSlGgVSzJoFkdAqG7CQiiZfHV9lChoBmgJaA9DCGtKsg5HV+C/lIaUUpRoFUsyaBZHQKhugliSaE11fZQoaAZoCWgPQwj+gXLbvkfRv5SGlFKUaBVLMmgWR0CocGLupjtpdX2UKGgGaAloD0MIUYNpGD6i7L+UhpRSlGgVSzJoFkdAqHAl+Zw4sHV9lChoBmgJaA9DCEwYzcr2IeW/lIaUUpRoFUsyaBZHQKhv1jQRf4R1fZQoaAZoCWgPQwiuEFZjCevlv5SGlFKUaBVLMmgWR0Cob5XSKFZgdX2UKGgGaAloD0MI3hyu1R524b+UhpRSlGgVSzJoFkdAqHF/qmj0tnV9lChoBmgJaA9DCCpvRzgt+OW/lIaUUpRoFUsyaBZHQKhxQsvIwM91fZQoaAZoCWgPQwhQGmoUkkznv5SGlFKUaBVLMmgWR0CocPMo2GZedX2UKGgGaAloD0MIgZauYBvx57+UhpRSlGgVSzJoFkdAqHCyxkd3jnV9lChoBmgJaA9DCFezzvi+uNO/lIaUUpRoFUsyaBZHQKhyk/wiJO51fZQoaAZoCWgPQwiDaRg+Iibov5SGlFKUaBVLMmgWR0CoclcCo0hvdX2UKGgGaAloD0MIxF+TNeoh5b+UhpRSlGgVSzJoFkdAqHIHOGCZnnV9lChoBmgJaA9DCO4KfbCMjfG/lIaUUpRoFUsyaBZHQKhxxsolUqB1fZQoaAZoCWgPQwgHJ6JfW7/gv5SGlFKUaBVLMmgWR0Coc5zL4etCdX2UKGgGaAloD0MI0EcZcQFo27+UhpRSlGgVSzJoFkdAqHNf2Cdz4nV9lChoBmgJaA9DCCkF3V7SGM2/lIaUUpRoFUsyaBZHQKhzD/Mnqml1fZQoaAZoCWgPQwi/mC1ZFaHxv5SGlFKUaBVLMmgWR0Cocs+I/JNkdX2UKGgGaAloD0MIsr6ByY0i3r+UhpRSlGgVSzJoFkdAqHSfJFLFoHV9lChoBmgJaA9DCE5fz9csl9G/lIaUUpRoFUsyaBZHQKh0YfJ3gUF1fZQoaAZoCWgPQwhljXqIRnfdv5SGlFKUaBVLMmgWR0CodBIw22ofdX2UKGgGaAloD0MIx0yiXvBp1L+UhpRSlGgVSzJoFkdAqHPRtP557nV9lChoBmgJaA9DCOyjU1c+y+S/lIaUUpRoFUsyaBZHQKh1qf+0gKZ1fZQoaAZoCWgPQwgnZyjueJPUv5SGlFKUaBVLMmgWR0CodWzRYzSDdX2UKGgGaAloD0MIbZBJRs7C1r+UhpRSlGgVSzJoFkdAqHUdAu7HyXV9lChoBmgJaA9DCIwrLo7KTdq/lIaUUpRoFUsyaBZHQKh03JdSl311ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f81b1f27a7c9e137c7f721c1dd33f9616b206563001391b0d00d1c49000371f
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5497f889d06b49d356debc2d3429c17bfe88c84bbb12224db96df63f42661ee3
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcf860f3700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcf860f2980>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680938950993772180, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAT8LOPniOtDtdLwM/T8LOPniOtDtdLwM/T8LOPniOtDtdLwM/T8LOPniOtDtdLwM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvIcCvVdnuT5kvZC/cDoKv9t8Kr/JC4e/ym+Av8FdAj4KVm++c0COv0P80j01MKw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABPws4+eI60O10vAz/UXTI8HdVRuhzc1jtPws4+eI60O10vAz/UXTI8HdVRuhzc1jtPws4+eI60O10vAz/UXTI8HdVRuhzc1jtPws4+eI60O10vAz/UXTI8HdVRuhzc1juUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4038262 0.00551015 0.51244146]\n [0.4038262 0.00551015 0.51244146]\n [0.4038262 0.00551015 0.51244146]\n [0.4038262 0.00551015 0.51244146]]", "desired_goal": "[[-0.03186773 0.36211655 -1.1307797 ]\n [-0.5399542 -0.66596764 -1.0550472 ]\n [-1.0034115 0.12731077 -0.23372665]\n [-1.1113418 0.10302021 1.3452212 ]]", "observation": "[[ 0.4038262 0.00551015 0.51244146 0.01088663 -0.00080045 0.006557 ]\n [ 0.4038262 0.00551015 0.51244146 0.01088663 -0.00080045 0.006557 ]\n [ 0.4038262 0.00551015 0.51244146 0.01088663 -0.00080045 0.006557 ]\n [ 0.4038262 0.00551015 0.51244146 0.01088663 -0.00080045 0.006557 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAToXxvXAADz4kkGA+txagvSN3tjz1Mgs+Qs3zu8Jcwb3W2cM97nOzvb3LADwHAZA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11793004 0.1396501 0.21929985]\n [-0.07816833 0.02227361 0.13593657]\n [-0.00744024 -0.0944152 0.09563033]\n [-0.08762346 0.00786107 0.28125784]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQKVKlL0l5L+UhpRSlIwBbJRLMowBdJRHQKgGgOkLx7R1fZQoaAZoCWgPQwiLcJNRZRjyv5SGlFKUaBVLMmgWR0CoBiEIHC40dX2UKGgGaAloD0MIKXtLOV/s6L+UhpRSlGgVSzJoFkdAqAXH2K2rn3V9lChoBmgJaA9DCHZTymslFAHAlIaUUpRoFUsyaBZHQKgFcN0eU6h1fZQoaAZoCWgPQwhKJxJMNTPuv5SGlFKUaBVLMmgWR0CoB6iW3Sa3dX2UKGgGaAloD0MI6WLTSiGQ6L+UhpRSlGgVSzJoFkdAqAdItQKrrHV9lChoBmgJaA9DCOKsiJroc+q/lIaUUpRoFUsyaBZHQKgG77CSA6N1fZQoaAZoCWgPQwh6qkNuhpv1v5SGlFKUaBVLMmgWR0CoBpikO7QLdX2UKGgGaAloD0MIZAYq49/n77+UhpRSlGgVSzJoFkdAqAjGv2Xb/XV9lChoBmgJaA9DCG0f8parn+u/lIaUUpRoFUsyaBZHQKgIZz3AVO91fZQoaAZoCWgPQwgFwHgGDX3qv5SGlFKUaBVLMmgWR0CoCA5TZQHidX2UKGgGaAloD0MIK6VneokRCsCUhpRSlGgVSzJoFkdAqAe3ZIxxk3V9lChoBmgJaA9DCO+P96qVyf6/lIaUUpRoFUsyaBZHQKgJ7gzguRN1fZQoaAZoCWgPQwh+VwT/W8n0v5SGlFKUaBVLMmgWR0CoCY5Huqm1dX2UKGgGaAloD0MITptxGqIqDsCUhpRSlGgVSzJoFkdAqAk1Dc/MXHV9lChoBmgJaA9DCHSaBdodUue/lIaUUpRoFUsyaBZHQKgI3igkC3h1fZQoaAZoCWgPQwjusfShC2rhv5SGlFKUaBVLMmgWR0CoCxRDst03dX2UKGgGaAloD0MImzi536Eo9b+UhpRSlGgVSzJoFkdAqAq05MlC1XV9lChoBmgJaA9DCG06ArhZPPO/lIaUUpRoFUsyaBZHQKgKXDCP6sR1fZQoaAZoCWgPQwii1ckZinv0v5SGlFKUaBVLMmgWR0CoCgWq94/vdX2UKGgGaAloD0MIsK4K1GJw57+UhpRSlGgVSzJoFkdAqAw6UFB6bHV9lChoBmgJaA9DCHNoke18v+y/lIaUUpRoFUsyaBZHQKgL2xSpBHF1fZQoaAZoCWgPQwjYne488bwDwJSGlFKUaBVLMmgWR0CoC4G0NSZSdX2UKGgGaAloD0MI7kEIyJdQ77+UhpRSlGgVSzJoFkdAqAsquW8h93V9lChoBmgJaA9DCMXkDTDznea/lIaUUpRoFUsyaBZHQKgNS8La24N1fZQoaAZoCWgPQwhtVRLZB9nrv5SGlFKUaBVLMmgWR0CoDOwJgLJCdX2UKGgGaAloD0MITgzJycSNCsCUhpRSlGgVSzJoFkdAqAySwnpjc3V9lChoBmgJaA9DCE5eZAJ+jfS/lIaUUpRoFUsyaBZHQKgMO7ulXRx1fZQoaAZoCWgPQwgSFaqbi7/qv5SGlFKUaBVLMmgWR0CoDmqJEYwZdX2UKGgGaAloD0MI6Zs0DYpGCcCUhpRSlGgVSzJoFkdAqA4K2hIvrXV9lChoBmgJaA9DCOM3hZUKqva/lIaUUpRoFUsyaBZHQKgNseOGTLZ1fZQoaAZoCWgPQwjS/3ItWsD2v5SGlFKUaBVLMmgWR0CoDVrxI8QqdX2UKGgGaAloD0MIVijS/ZzC+r+UhpRSlGgVSzJoFkdAqA+Xb0voNnV9lChoBmgJaA9DCAbX3NH/8u6/lIaUUpRoFUsyaBZHQKgPN5ZbILh1fZQoaAZoCWgPQwg7Hch6avUAwJSGlFKUaBVLMmgWR0CoDt5ZB9kSdX2UKGgGaAloD0MIlPdxNEcW/r+UhpRSlGgVSzJoFkdAqA6HeizsyHV9lChoBmgJaA9DCCC29GiqFxPAlIaUUpRoFUsyaBZHQKgQrz1bqyJ1fZQoaAZoCWgPQwi+wKxQpHvov5SGlFKUaBVLMmgWR0CoEE+dbxEwdX2UKGgGaAloD0MIqIsUysKXCsCUhpRSlGgVSzJoFkdAqA/2XZ5AyHV9lChoBmgJaA9DCOgyNQne0PC/lIaUUpRoFUsyaBZHQKgPn1mrbQF1fZQoaAZoCWgPQwjnyMovg+EYwJSGlFKUaBVLMmgWR0CoEc/fXPJJdX2UKGgGaAloD0MIbeNPVDas6L+UhpRSlGgVSzJoFkdAqBFwBRyfc3V9lChoBmgJaA9DCBYzwtuDEBrAlIaUUpRoFUsyaBZHQKgRFtP557h1fZQoaAZoCWgPQwiTwyedSOAUwJSGlFKUaBVLMmgWR0CoEL+2E0zkdX2UKGgGaAloD0MIdxVSflKtDsCUhpRSlGgVSzJoFkdAqBLqOYIBzXV9lChoBmgJaA9DCGwIjsu4yQnAlIaUUpRoFUsyaBZHQKgSipPykKx1fZQoaAZoCWgPQwjBkNWtnrMFwJSGlFKUaBVLMmgWR0CoEjFvqC6IdX2UKGgGaAloD0MIlGjJ42n54L+UhpRSlGgVSzJoFkdAqBHagf2bonV9lChoBmgJaA9DCIyiBz4Gq++/lIaUUpRoFUsyaBZHQKgUGjrRjSZ1fZQoaAZoCWgPQwir7Sb4pmkEwJSGlFKUaBVLMmgWR0CoE7qc/dIodX2UKGgGaAloD0MIRSqMLQRZCcCUhpRSlGgVSzJoFkdAqBNhnHvMKXV9lChoBmgJaA9DCDm3CffKvPu/lIaUUpRoFUsyaBZHQKgTCsg+yJN1fZQoaAZoCWgPQwgFbAcj9gnxv5SGlFKUaBVLMmgWR0CoFVQ6p5u7dX2UKGgGaAloD0MIIqZEEr3M+7+UhpRSlGgVSzJoFkdAqBT0zCUHIXV9lChoBmgJaA9DCNzVq8joAPG/lIaUUpRoFUsyaBZHQKgUm9g4Otp1fZQoaAZoCWgPQwj+mxcnvhoFwJSGlFKUaBVLMmgWR0CoFEUXP7emdX2UKGgGaAloD0MIJ2a9GMqJ3r+UhpRSlGgVSzJoFkdAqBaHsmfGuXV9lChoBmgJaA9DCK8K1GLwsPm/lIaUUpRoFUsyaBZHQKgWJ/3Fkx11fZQoaAZoCWgPQwh4CyQofgwAwJSGlFKUaBVLMmgWR0CoFc7HAAQydX2UKGgGaAloD0MIx0s3iUGwEMCUhpRSlGgVSzJoFkdAqBV3y08eS3V9lChoBmgJaA9DCAlupGyRFAXAlIaUUpRoFUsyaBZHQKgXqT3Zf2N1fZQoaAZoCWgPQwgwvJLkuX4DwJSGlFKUaBVLMmgWR0CoF0lg2IfsdX2UKGgGaAloD0MItoZSexHt9b+UhpRSlGgVSzJoFkdAqBbwHzH0b3V9lChoBmgJaA9DCKIqptJPWAjAlIaUUpRoFUsyaBZHQKgWmPmPo3d1fZQoaAZoCWgPQwhvERjrGxjzv5SGlFKUaBVLMmgWR0CoGMz/IbOvdX2UKGgGaAloD0MIHozYJ4DiB8CUhpRSlGgVSzJoFkdAqBhtaY/mknV9lChoBmgJaA9DCEm5+xwf7QDAlIaUUpRoFUsyaBZHQKgYFE0iyIJ1fZQoaAZoCWgPQwg2r+qsFtjhv5SGlFKUaBVLMmgWR0CoF71kDp1SdX2UKGgGaAloD0MIe737473q8r+UhpRSlGgVSzJoFkdAqBnq+pOvdXV9lChoBmgJaA9DCP7zNGCQ7CrAlIaUUpRoFUsyaBZHQKgZiy31BdF1fZQoaAZoCWgPQwh32ERmLnD4v5SGlFKUaBVLMmgWR0CoGTIDgZTAdX2UKGgGaAloD0MIW9JRDmZT87+UhpRSlGgVSzJoFkdAqBja/IsAenV9lChoBmgJaA9DCEdVE0TdlxrAlIaUUpRoFUsyaBZHQKgbwSfUWmB1fZQoaAZoCWgPQwhGJAot6z79v5SGlFKUaBVLMmgWR0CoG2I/7iyZdX2UKGgGaAloD0MIjQxyF2HSMcCUhpRSlGgVSzJoFkdAqBsJ2ECeVnV9lChoBmgJaA9DCH+mXrcIPCTAlIaUUpRoFUsyaBZHQKgas7yQPqd1fZQoaAZoCWgPQwgKuyh64IMMwJSGlFKUaBVLMmgWR0CoHZ2BSUC8dX2UKGgGaAloD0MIqUvGMZIFJ8CUhpRSlGgVSzJoFkdAqB0+fseGPHV9lChoBmgJaA9DCPSj4ZS5aRbAlIaUUpRoFUsyaBZHQKgc5jQRf4R1fZQoaAZoCWgPQwjRPlbw21D8v5SGlFKUaBVLMmgWR0CoHI+vZAY6dX2UKGgGaAloD0MIK061FmZh+7+UhpRSlGgVSzJoFkdAqB+QBxPweHV9lChoBmgJaA9DCCAqjZjZ5/a/lIaUUpRoFUsyaBZHQKgfMS1Vo6F1fZQoaAZoCWgPQwhb7zfacWMMwJSGlFKUaBVLMmgWR0CoHtkE9t/GdX2UKGgGaAloD0MIHXHIBtIlCsCUhpRSlGgVSzJoFkdAqB6C/mDDj3V9lChoBmgJaA9DCA8r3PKRFO6/lIaUUpRoFUsyaBZHQKghitg8bJh1fZQoaAZoCWgPQwgBbatZZxwBwJSGlFKUaBVLMmgWR0CoISxD1GsndX2UKGgGaAloD0MIAfc8f9qoAMCUhpRSlGgVSzJoFkdAqCDUNQTEi3V9lChoBmgJaA9DCNuHvOXqB/6/lIaUUpRoFUsyaBZHQKggfjWCmMx1fZQoaAZoCWgPQwjzcW2oGCf2v5SGlFKUaBVLMmgWR0CoI32WyC4CdX2UKGgGaAloD0MI5IV0eAhjCMCUhpRSlGgVSzJoFkdAqCMevQnhKnV9lChoBmgJaA9DCIblz7cFywPAlIaUUpRoFUsyaBZHQKgixnM+u/11fZQoaAZoCWgPQwjAsWfPZerjv5SGlFKUaBVLMmgWR0CoInBf0EowdX2UKGgGaAloD0MI2AxwQbYs9b+UhpRSlGgVSzJoFkdAqCT+us90R3V9lChoBmgJaA9DCLLxYIvd/vi/lIaUUpRoFUsyaBZHQKgknyUcGTt1fZQoaAZoCWgPQwgVcTrJVtf+v5SGlFKUaBVLMmgWR0CoJEYPGyX2dX2UKGgGaAloD0MIkUWaeAf48L+UhpRSlGgVSzJoFkdAqCPvQKKHf3V9lChoBmgJaA9DCLsO1ZRkXf2/lIaUUpRoFUsyaBZHQKgmI+Eh7md1fZQoaAZoCWgPQwi9jc2OVL8NwJSGlFKUaBVLMmgWR0CoJcQLux8ldX2UKGgGaAloD0MIrDlAMEcvEMCUhpRSlGgVSzJoFkdAqCVq0OVgQnV9lChoBmgJaA9DCMVXO4pzFPa/lIaUUpRoFUsyaBZHQKglE8VYZEV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3a20630670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3a2062afc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680961036661240943, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5rG7PsFyQ70NRB0/5rG7PsFyQ70NRB0/5rG7PsFyQ70NRB0/5rG7PsFyQ70NRB0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKBoGPyvpz75pMDa+vm01v9oyBL5o92i/9ASqv+1+pb1gRdo+k7xmPgG5y7/RPd6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADmsbs+wXJDvQ1EHT8bmVQ9gl4TvBY1XT3msbs+wXJDvQ1EHT8bmVQ9gl4TvBY1XT3msbs+wXJDvQ1EHT8bmVQ9gl4TvBY1XT3msbs+wXJDvQ1EHT8bmVQ9gl4TvBY1XT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36659163 -0.04771686 0.6143196 ]\n [ 0.36659163 -0.04771686 0.6143196 ]\n [ 0.36659163 -0.04771686 0.6143196 ]\n [ 0.36659163 -0.04771686 0.6143196 ]]", "desired_goal": "[[ 0.5238366 -0.4060758 -0.17791905]\n [-0.7087058 -0.12910023 -0.9100251 ]\n [-1.3282762 -0.0808085 0.42631054]\n [ 0.22532873 -1.5915834 -1.7362615 ]]", "observation": "[[ 0.36659163 -0.04771686 0.6143196 0.05190383 -0.0089947 0.0540057 ]\n [ 0.36659163 -0.04771686 0.6143196 0.05190383 -0.0089947 0.0540057 ]\n [ 0.36659163 -0.04771686 0.6143196 0.05190383 -0.0089947 0.0540057 ]\n [ 0.36659163 -0.04771686 0.6143196 0.05190383 -0.0089947 0.0540057 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzXXWPT8Dmr1RWFk878rwPXvn5b3YjIU9gCSQuh5ODj1zzpU+ZFyEuzA2Fb6tTh0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10471687 -0.0752015 0.01326569]\n [ 0.11757457 -0.11225792 0.06521004]\n [-0.00109972 0.03474247 0.2925907 ]\n [-0.00403933 -0.14571452 0.15362044]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINzP60XDK2L+UhpRSlIwBbJRLMowBdJRHQKhYkLSeAd51fZQoaAZoCWgPQwhQcLGiBtPRv5SGlFKUaBVLMmgWR0CoWFOFpPAPdX2UKGgGaAloD0MI9zqpL0t787+UhpRSlGgVSzJoFkdAqFgDcXWOInV9lChoBmgJaA9DCPWCT3PyIsm/lIaUUpRoFUsyaBZHQKhXws4DLbJ1fZQoaAZoCWgPQwjiPnJr0m3Rv5SGlFKUaBVLMmgWR0CoWZYwAU+LdX2UKGgGaAloD0MIXRq/8EqS57+UhpRSlGgVSzJoFkdAqFlZK8L8aXV9lChoBmgJaA9DCDCeQUP/BN2/lIaUUpRoFUsyaBZHQKhZCTRIBil1fZQoaAZoCWgPQwi9UStM3+viv5SGlFKUaBVLMmgWR0CoWMiqhlDndX2UKGgGaAloD0MI7pbkgF1N2b+UhpRSlGgVSzJoFkdAqFqgLofSyHV9lChoBmgJaA9DCC2wx0RKs+C/lIaUUpRoFUsyaBZHQKhaYv/zasZ1fZQoaAZoCWgPQwgs1JrmHafgv5SGlFKUaBVLMmgWR0CoWhMaS9uhdX2UKGgGaAloD0MIXi13ZoLh2b+UhpRSlGgVSzJoFkdAqFnSshgVoHV9lChoBmgJaA9DCL68APvoVOa/lIaUUpRoFUsyaBZHQKhbsOBDohZ1fZQoaAZoCWgPQwih2Aqalljgv5SGlFKUaBVLMmgWR0CoW3O3+dbxdX2UKGgGaAloD0MI8ghupGyR17+UhpRSlGgVSzJoFkdAqFsjvJA+p3V9lChoBmgJaA9DCKchqvBneNu/lIaUUpRoFUsyaBZHQKha4zSkTHt1fZQoaAZoCWgPQwgMHqZ9c3/Tv5SGlFKUaBVLMmgWR0CoXK0sFt9AdX2UKGgGaAloD0MIC+2cZoF2zb+UhpRSlGgVSzJoFkdAqFxv5eqrBHV9lChoBmgJaA9DCGKFWz6SkuK/lIaUUpRoFUsyaBZHQKhcIBUaQ3h1fZQoaAZoCWgPQwh9I7pnXaPdv5SGlFKUaBVLMmgWR0CoW9+mFajfdX2UKGgGaAloD0MI1/uNdtzw1L+UhpRSlGgVSzJoFkdAqF2vkWAPNHV9lChoBmgJaA9DCDAvwD46ddu/lIaUUpRoFUsyaBZHQKhdcn/kvK51fZQoaAZoCWgPQwgCgc6kTdXXv5SGlFKUaBVLMmgWR0CoXSK8L8aXdX2UKGgGaAloD0MI51CGqphK2r+UhpRSlGgVSzJoFkdAqFziNKh+OXV9lChoBmgJaA9DCNE7FXDP88e/lIaUUpRoFUsyaBZHQKheupsoDxN1fZQoaAZoCWgPQwiM+E7MejHbv5SGlFKUaBVLMmgWR0CoXn2tU4rCdX2UKGgGaAloD0MIoUliSbn72b+UhpRSlGgVSzJoFkdAqF4ttoBaLXV9lChoBmgJaA9DCBHEeTiB6eK/lIaUUpRoFUsyaBZHQKhd7WGyon91fZQoaAZoCWgPQwgAcsKE0aznv5SGlFKUaBVLMmgWR0CoX8TyJ9ApdX2UKGgGaAloD0MIW7G/7J6877+UhpRSlGgVSzJoFkdAqF+H6Eal13V9lChoBmgJaA9DCHOCNjl80s2/lIaUUpRoFUsyaBZHQKhfN9qk/KR1fZQoaAZoCWgPQwixUGuad5zdv5SGlFKUaBVLMmgWR0CoXvdd3SrpdX2UKGgGaAloD0MIGF5J8lzf6L+UhpRSlGgVSzJoFkdAqGDF/jKgZnV9lChoBmgJaA9DCKVN1T2yOem/lIaUUpRoFUsyaBZHQKhgiOQyRCB1fZQoaAZoCWgPQwjQgHozaj7vv5SGlFKUaBVLMmgWR0CoYDka2nbZdX2UKGgGaAloD0MIaTf6mA8I0r+UhpRSlGgVSzJoFkdAqF/4fMfRu3V9lChoBmgJaA9DCA/vObAcIeu/lIaUUpRoFUsyaBZHQKhh0f9P1th1fZQoaAZoCWgPQwhe1VktsMfbv5SGlFKUaBVLMmgWR0CoYZUbcXWOdX2UKGgGaAloD0MIDhR4J58e4L+UhpRSlGgVSzJoFkdAqGFFS/CZW3V9lChoBmgJaA9DCAPS/gdYK+i/lIaUUpRoFUsyaBZHQKhhBNs3yZt1fZQoaAZoCWgPQwiKVYMwt3vqv5SGlFKUaBVLMmgWR0CoYvr+o99udX2UKGgGaAloD0MIa2EW2jnN4r+UhpRSlGgVSzJoFkdAqGK+sLfDUHV9lChoBmgJaA9DCChhpu1fWdu/lIaUUpRoFUsyaBZHQKhibtEXtSh1fZQoaAZoCWgPQwhmEYqtoOniv5SGlFKUaBVLMmgWR0CoYi4dQwbmdX2UKGgGaAloD0MIKCuGqwMg4L+UhpRSlGgVSzJoFkdAqGP9bqyGBXV9lChoBmgJaA9DCCv52F2gJOC/lIaUUpRoFUsyaBZHQKhjwGTs6aN1fZQoaAZoCWgPQwhe1sQCX1Hiv5SGlFKUaBVLMmgWR0CoY3BC+lCUdX2UKGgGaAloD0MI7YMsCyZ+7L+UhpRSlGgVSzJoFkdAqGMvlyR0VHV9lChoBmgJaA9DCIofY+5aQtW/lIaUUpRoFUsyaBZHQKhlJ/o7muF1fZQoaAZoCWgPQwjGppVCIJfTv5SGlFKUaBVLMmgWR0CoZOuCf6GhdX2UKGgGaAloD0MIc7nBUIcV67+UhpRSlGgVSzJoFkdAqGSchV2ic3V9lChoBmgJaA9DCChGlsyxPOC/lIaUUpRoFUsyaBZHQKhkXGnXNC91fZQoaAZoCWgPQwgdOj3vxoLbv5SGlFKUaBVLMmgWR0CoZswG4ZuRdX2UKGgGaAloD0MIBwySPq2i4r+UhpRSlGgVSzJoFkdAqGaPu9eyA3V9lChoBmgJaA9DCLotkQvO4OW/lIaUUpRoFUsyaBZHQKhmQHHFPzp1fZQoaAZoCWgPQwhEigESTaDMv5SGlFKUaBVLMmgWR0CoZgB9Cu2adX2UKGgGaAloD0MIjGSPUDOk4L+UhpRSlGgVSzJoFkdAqGh3jMmnfnV9lChoBmgJaA9DCOnwEMZP4+e/lIaUUpRoFUsyaBZHQKhoO2sq8UV1fZQoaAZoCWgPQwjlJ9U+HQ/iv5SGlFKUaBVLMmgWR0CoZ+w+dK/VdX2UKGgGaAloD0MIO6jEdYwr3r+UhpRSlGgVSzJoFkdAqGeszl90BHV9lChoBmgJaA9DCOkoB7MJMNi/lIaUUpRoFUsyaBZHQKhqIdGRV6x1fZQoaAZoCWgPQwjUKvpDM0/mv5SGlFKUaBVLMmgWR0CoaeWWIGhVdX2UKGgGaAloD0MIFEIHXcIh5r+UhpRSlGgVSzJoFkdAqGmWVmjCYXV9lChoBmgJaA9DCBiWP98WLOG/lIaUUpRoFUsyaBZHQKhpVoSteUp1fZQoaAZoCWgPQwhig4WTNP/hv5SGlFKUaBVLMmgWR0Coa+Zv99+gdX2UKGgGaAloD0MIP+YDAp1J17+UhpRSlGgVSzJoFkdAqGuqjxkNF3V9lChoBmgJaA9DCFCm0eRiDPK/lIaUUpRoFUsyaBZHQKhrWx1PnCB1fZQoaAZoCWgPQwhRFVPpJ5zcv5SGlFKUaBVLMmgWR0CoaxuRLbpNdX2UKGgGaAloD0MIhPV/DvNl5b+UhpRSlGgVSzJoFkdAqG3vcer+53V9lChoBmgJaA9DCF+X4T/dQOu/lIaUUpRoFUsyaBZHQKhttWKdhAp1fZQoaAZoCWgPQwhgWP58W7DTv5SGlFKUaBVLMmgWR0CobWY6fapQdX2UKGgGaAloD0MImpfD7jsG6r+UhpRSlGgVSzJoFkdAqG0myeI2wXV9lChoBmgJaA9DCNxGA3gLJOu/lIaUUpRoFUsyaBZHQKhvT09yLht1fZQoaAZoCWgPQwgaFw6EZIHmv5SGlFKUaBVLMmgWR0CobxI7Njb0dX2UKGgGaAloD0MIraOqCaLu27+UhpRSlGgVSzJoFkdAqG7CQiiZfHV9lChoBmgJaA9DCGtKsg5HV+C/lIaUUpRoFUsyaBZHQKhugliSaE11fZQoaAZoCWgPQwj+gXLbvkfRv5SGlFKUaBVLMmgWR0CocGLupjtpdX2UKGgGaAloD0MIUYNpGD6i7L+UhpRSlGgVSzJoFkdAqHAl+Zw4sHV9lChoBmgJaA9DCEwYzcr2IeW/lIaUUpRoFUsyaBZHQKhv1jQRf4R1fZQoaAZoCWgPQwiuEFZjCevlv5SGlFKUaBVLMmgWR0Cob5XSKFZgdX2UKGgGaAloD0MI3hyu1R524b+UhpRSlGgVSzJoFkdAqHF/qmj0tnV9lChoBmgJaA9DCCpvRzgt+OW/lIaUUpRoFUsyaBZHQKhxQsvIwM91fZQoaAZoCWgPQwhQGmoUkkznv5SGlFKUaBVLMmgWR0CocPMo2GZedX2UKGgGaAloD0MIgZauYBvx57+UhpRSlGgVSzJoFkdAqHCyxkd3jnV9lChoBmgJaA9DCFezzvi+uNO/lIaUUpRoFUsyaBZHQKhyk/wiJO51fZQoaAZoCWgPQwiDaRg+Iibov5SGlFKUaBVLMmgWR0CoclcCo0hvdX2UKGgGaAloD0MIxF+TNeoh5b+UhpRSlGgVSzJoFkdAqHIHOGCZnnV9lChoBmgJaA9DCO4KfbCMjfG/lIaUUpRoFUsyaBZHQKhxxsolUqB1fZQoaAZoCWgPQwgHJ6JfW7/gv5SGlFKUaBVLMmgWR0Coc5zL4etCdX2UKGgGaAloD0MI0EcZcQFo27+UhpRSlGgVSzJoFkdAqHNf2Cdz4nV9lChoBmgJaA9DCCkF3V7SGM2/lIaUUpRoFUsyaBZHQKhzD/Mnqml1fZQoaAZoCWgPQwi/mC1ZFaHxv5SGlFKUaBVLMmgWR0Cocs+I/JNkdX2UKGgGaAloD0MIsr6ByY0i3r+UhpRSlGgVSzJoFkdAqHSfJFLFoHV9lChoBmgJaA9DCE5fz9csl9G/lIaUUpRoFUsyaBZHQKh0YfJ3gUF1fZQoaAZoCWgPQwhljXqIRnfdv5SGlFKUaBVLMmgWR0CodBIw22ofdX2UKGgGaAloD0MIx0yiXvBp1L+UhpRSlGgVSzJoFkdAqHPRtP557nV9lChoBmgJaA9DCOyjU1c+y+S/lIaUUpRoFUsyaBZHQKh1qf+0gKZ1fZQoaAZoCWgPQwgnZyjueJPUv5SGlFKUaBVLMmgWR0CodWzRYzSDdX2UKGgGaAloD0MIbZBJRs7C1r+UhpRSlGgVSzJoFkdAqHUdAu7HyXV9lChoBmgJaA9DCIwrLo7KTdq/lIaUUpRoFUsyaBZHQKh03JdSl311ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.5527579562505707, "std_reward": 0.16333487668497626, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-08T14:29:21.867528"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e80567c5cb447be4a2d9404c9d0132604d8f00308c2ab366bae6d70cc02402ac
|
3 |
size 3056
|