serkanBurakOrs
commited on
Commit
•
2c62f2d
1
Parent(s):
4d57d2b
Push LunarLander-v2 model
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +28 -28
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +4 -4
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 277.81 +/- 26.55
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f02b371f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f02b37280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f02b37310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f02b373a0>", "_build": "<function ActorCriticPolicy._build at 0x7f5f02b37430>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f02b374c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5f02b37550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f02b375e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f02b37670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f02b37700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f02b37790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f02b37820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5f02b368c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679767737496856351, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0hED0FImY/7mO+vDTNy77UrpY9sfLKvAAAAAAAAAAApvUGPp4Ztz0e2ea9BsFUvppqVT3izAi9AAAAAAAAAADNzrW8FDiTuhBFFDkPrwo0gL6nudAALLgAAIA/AACAP2bI5DwkQE08Ml6ZPUOLV75DTyk9LNKwvQAAAAAAAAAAzbErvhi5pz/qQBy/ecWrvvIKb74dmZu+AAAAAAAAAADNeF68TFe0P/b3Lb9vt2u9DXFZPEDa2j0AAAAAAAAAAADGVTwpbHS6e1DPN1OVVzU+fS27Nqb1tgAAgD8AAIA/5jWgvUg5irogKe63phriskEw77pXVgo3AACAPwAAgD9md4s8hRD1u0q5iLvk/JU8hBhFPUU4e70AAIA/AACAPzPHXTzXWlS7UreLPDmWcjwfSoA8ckxSvQAAgD8AAIA/AO4vPGwbtz+LBos+rlY2PrhdSLwjJXm9AAAAAAAAAADG5Bk+nLpSPcjWAr7aUEe+Req4PIe0Rr0AAAAAAAAAAHN40D2ukay6ibkyOn/LWzZscgm6UCNNuQAAAAAAAIA/XfZNvjTThD9ero++f0DNvlXla76zWrQ9AAAAAAAAAADNnBe9bgy0vCMqYTzHyGi8xgtPPOKRgDwAAIA/AACAP9r4hb1vdR09BQ5kvL0yRb5LbRS9xAQnPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWyOCcXCDb0CUhpRSlIwBbJRNRwGMAXSUR0CTi4hOP/70dX2UKGgGaAloD0MIHm6HhgUGcECUhpRSlGgVTTYBaBZHQJONQi8nNPh1fZQoaAZoCWgPQwiXjjnPmM1wQJSGlFKUaBVNGQFoFkdAk41Tt9hJAnV9lChoBmgJaA9DCEyqtptgRnFAlIaUUpRoFU1GAWgWR0CTjYiqyWzGdX2UKGgGaAloD0MI8nub/uwlc0CUhpRSlGgVTQ4BaBZHQJON9BC2MKl1fZQoaAZoCWgPQwj75ZMVQ9BtQJSGlFKUaBVNSwFoFkdAk45hdhRZU3V9lChoBmgJaA9DCNqQf2bQIXBAlIaUUpRoFU2IAWgWR0CTj8b8m8dxdX2UKGgGaAloD0MIhA8lWjLScECUhpRSlGgVTRgBaBZHQJOQ5j7Q9id1fZQoaAZoCWgPQwj8VBUaiL9MQJSGlFKUaBVNAAFoFkdAk5Ezdgv12HV9lChoBmgJaA9DCDogCfv27m1AlIaUUpRoFU1DAWgWR0CTkioLofSydX2UKGgGaAloD0MIkx0bgXjRTUCUhpRSlGgVS+RoFkdAk5Ity5qdpnV9lChoBmgJaA9DCECGjh1UC29AlIaUUpRoFU0vAWgWR0CTknewcHW0dX2UKGgGaAloD0MIvsCsUKTkcECUhpRSlGgVTYoBaBZHQJOSkajvd/J1fZQoaAZoCWgPQwjiHeBJCz1xQJSGlFKUaBVNOgFoFkdAk5KVxOtW/HV9lChoBmgJaA9DCPnZyHUTrnBAlIaUUpRoFU1UAWgWR0CTkx1hsqJ/dX2UKGgGaAloD0MI1AypovjcckCUhpRSlGgVTUgBaBZHQJOTT6KtPpJ1fZQoaAZoCWgPQwiP5PIf0qJuQJSGlFKUaBVNLgFoFkdAk5UUEovzv3V9lChoBmgJaA9DCHTS+8YXPHBAlIaUUpRoFU0dAWgWR0CTliW3jMmndX2UKGgGaAloD0MI5Uf8ijXrcECUhpRSlGgVTSABaBZHQJOWfEIgNgB1fZQoaAZoCWgPQwhaYmU0Mo5xQJSGlFKUaBVNKwFoFkdAk5ahvvSc9XV9lChoBmgJaA9DCDDw3Hs4429AlIaUUpRoFU0nAWgWR0CTlw+WWyC4dX2UKGgGaAloD0MIRL5LqUvLcECUhpRSlGgVTRkBaBZHQJOXDoZAIIF1fZQoaAZoCWgPQwjs20lE+GdxQJSGlFKUaBVNJgFoFkdAk5ifx+az/3V9lChoBmgJaA9DCCk/qfbpVXJAlIaUUpRoFUv0aBZHQJOZHshPj4p1fZQoaAZoCWgPQwjTaHIxBphyQJSGlFKUaBVNGgFoFkdAk5l+hwl0HXV9lChoBmgJaA9DCHU8ZqAyPm1AlIaUUpRoFU0TAWgWR0CTmpTBZZB+dX2UKGgGaAloD0MIdJoF2l3ncUCUhpRSlGgVTR4BaBZHQJOakukDZDl1fZQoaAZoCWgPQwj8/zhhAihyQJSGlFKUaBVNVgFoFkdAk5tfj0cwQHV9lChoBmgJaA9DCLpnXaMl2XJAlIaUUpRoFU0YAWgWR0CTm3tbs4T9dX2UKGgGaAloD0MIWTZzSOqSb0CUhpRSlGgVTR4BaBZHQJOb/Dl5nlJ1fZQoaAZoCWgPQwgwKT4+oWZxQJSGlFKUaBVNXwFoFkdAk50rTtsvZnV9lChoBmgJaA9DCHlYqDWNfXFAlIaUUpRoFU0bAWgWR0CTng3cHnlodX2UKGgGaAloD0MISrTk8XQEckCUhpRSlGgVTYABaBZHQJOeJat9x6x1fZQoaAZoCWgPQwjnxB7ax9ZRQJSGlFKUaBVL22gWR0CToHHq/ub7dX2UKGgGaAloD0MIAVDFjVs5ckCUhpRSlGgVTSIBaBZHQJOgcAaNuLt1fZQoaAZoCWgPQwgIPgYrzkhxQJSGlFKUaBVNTQFoFkdAk6Fq3uuzQnV9lChoBmgJaA9DCBL6mXrdQEtAlIaUUpRoFUvhaBZHQJOjBQ9A5aN1fZQoaAZoCWgPQwjOGOYEbaFwQJSGlFKUaBVNjgFoFkdAk6O34j8k2XV9lChoBmgJaA9DCE8eFmoNhnJAlIaUUpRoFU1IAWgWR0CTo/G9pRGddX2UKGgGaAloD0MI7+cU5Ke7cUCUhpRSlGgVTQwBaBZHQJOk2+BYmsx1fZQoaAZoCWgPQwh2weCae4xyQJSGlFKUaBVNKgFoFkdAk6UPdZaFEnV9lChoBmgJaA9DCKmHaHQHcm9AlIaUUpRoFU0vAWgWR0CTpTveP7vYdX2UKGgGaAloD0MIQ1n4+tpzcUCUhpRSlGgVTbwBaBZHQJOmPcbiqAB1fZQoaAZoCWgPQwgAqU2cXAhxQJSGlFKUaBVNcQFoFkdAk6aOizsyBXV9lChoBmgJaA9DCNxI2SJpG3BAlIaUUpRoFU0KAWgWR0CTpqzyjHn2dX2UKGgGaAloD0MItFiK5KvWbUCUhpRSlGgVTQsBaBZHQJOncEnssxx1fZQoaAZoCWgPQwjUmBBzicNwQJSGlFKUaBVNTgFoFkdAk6eB4QjD9HV9lChoBmgJaA9DCKtALQYP8HBAlIaUUpRoFU0ZAWgWR0CTp95Jsfq5dX2UKGgGaAloD0MIl8eakUFEUECUhpRSlGgVS+NoFkdAk8I8XizcAXV9lChoBmgJaA9DCA1xrIvbwnFAlIaUUpRoFU1OAWgWR0CTw454nndPdX2UKGgGaAloD0MIvaYHBaUoQECUhpRSlGgVS/VoFkdAk8T5IDoyK3V9lChoBmgJaA9DCCY49YHkX21AlIaUUpRoFU1CAWgWR0CTxpfYzzmPdX2UKGgGaAloD0MIVp5A2CmMb0CUhpRSlGgVTdwCaBZHQJPGpFVktmN1fZQoaAZoCWgPQwggQ8cO6iZxQJSGlFKUaBVNiAFoFkdAk8b/xhDw6XV9lChoBmgJaA9DCEEuceQBj2xAlIaUUpRoFU08AWgWR0CTx4HdGiHqdX2UKGgGaAloD0MIdEaU9gbMbECUhpRSlGgVTS0BaBZHQJPIUKohpxp1fZQoaAZoCWgPQwj034PX7tByQJSGlFKUaBVNXQFoFkdAk8jjollbvHV9lChoBmgJaA9DCAUXK2qwL3JAlIaUUpRoFU0hAWgWR0CTyU2B8QZodX2UKGgGaAloD0MId/hrssaucUCUhpRSlGgVTUIBaBZHQJPJWLVFx4p1fZQoaAZoCWgPQwjRyyiW24lxQJSGlFKUaBVNIgFoFkdAk8lqN+9alnV9lChoBmgJaA9DCKVquwk+g25AlIaUUpRoFU1BAWgWR0CTyrsGPgejdX2UKGgGaAloD0MIMZi/QqYlcUCUhpRSlGgVTXIBaBZHQJPK3c/MW451fZQoaAZoCWgPQwic4Jumj1xxQJSGlFKUaBVNGQFoFkdAk8wgfyPMjnV9lChoBmgJaA9DCA8LtaZ5ynFAlIaUUpRoFU0mAWgWR0CTzb64Ds+ndX2UKGgGaAloD0MI0xVsIx4dcUCUhpRSlGgVTZACaBZHQJPOvJfYzzp1fZQoaAZoCWgPQwi2gqYlVjZvQJSGlFKUaBVNKgFoFkdAk88+1fE4vXV9lChoBmgJaA9DCDEHQUerwnFAlIaUUpRoFU0XAWgWR0CT0FuscQyzdX2UKGgGaAloD0MIVG8NbNXdcECUhpRSlGgVTTABaBZHQJPQ8rDqGDd1fZQoaAZoCWgPQwio4VtYt+VtQJSGlFKUaBVNMQFoFkdAk9EHxvvSdHV9lChoBmgJaA9DCIG0/wEWNnBAlIaUUpRoFU0cAWgWR0CT0Q1LrX18dX2UKGgGaAloD0MIU3qml5hpcECUhpRSlGgVTR8BaBZHQJPR5gb6xgR1fZQoaAZoCWgPQwiWtOIbiqtvQJSGlFKUaBVNFQFoFkdAk9KTfvWpZXV9lChoBmgJaA9DCHsuU5OgsHBAlIaUUpRoFU0sAWgWR0CT004sVclgdX2UKGgGaAloD0MIo+pXOl+9ckCUhpRSlGgVTUcBaBZHQJPT0T8HfMx1fZQoaAZoCWgPQwjWbyamC7ZvQJSGlFKUaBVNOAFoFkdAk9PYYekpJHV9lChoBmgJaA9DCPylRX0SRW9AlIaUUpRoFU0eAWgWR0CT1HVFQVKxdX2UKGgGaAloD0MIjiJrDWWPcECUhpRSlGgVTTABaBZHQJPVI5MlC1J1fZQoaAZoCWgPQwjDK0me63JvQJSGlFKUaBVNIwFoFkdAk9X6NdZ7onV9lChoBmgJaA9DCAt/hjcr9XJAlIaUUpRoFUv9aBZHQJPWUnjQzDZ1fZQoaAZoCWgPQwj/0MyTK/9wQJSGlFKUaBVNDwFoFkdAk9gr655JLHV9lChoBmgJaA9DCIsZ4e2B13JAlIaUUpRoFUvkaBZHQJPYTRKHwgF1fZQoaAZoCWgPQwiqRq8GKNNxQJSGlFKUaBVNYwFoFkdAk9qL/S6UaHV9lChoBmgJaA9DCEhwI2WLL21AlIaUUpRoFU0+AWgWR0CT2sMnJDE4dX2UKGgGaAloD0MIcy8wK5SccECUhpRSlGgVTTMBaBZHQJPa6Aqd6LR1fZQoaAZoCWgPQwjeVnpttm9xQJSGlFKUaBVNHQFoFkdAk9sXyRSxaHV9lChoBmgJaA9DCHKKjuTyT0hAlIaUUpRoFUvoaBZHQJPbL225QP91fZQoaAZoCWgPQwjWHYttEiNyQJSGlFKUaBVNFAFoFkdAk9tqABkqc3V9lChoBmgJaA9DCED4UKLlxnFAlIaUUpRoFU0hAWgWR0CT3I5XU6PsdX2UKGgGaAloD0MIrd7hdihncECUhpRSlGgVTWwBaBZHQJPc09QoCuF1fZQoaAZoCWgPQwjg88MIoZJwQJSGlFKUaBVNHQFoFkdAk9zvalDWsnV9lChoBmgJaA9DCLrZHyi33l5AlIaUUpRoFU3oA2gWR0CT3TXw9aEBdX2UKGgGaAloD0MI5XtGIrTKcECUhpRSlGgVTQoBaBZHQJPdjTRYzSF1fZQoaAZoCWgPQwjhfVUu1OlvQJSGlFKUaBVNBgFoFkdAk96OjynUD3V9lChoBmgJaA9DCBAGnntPHnBAlIaUUpRoFU1IAWgWR0CT3p/RmbsodX2UKGgGaAloD0MI9SwI5X3+bkCUhpRSlGgVTRYBaBZHQJPeqksSTQp1fZQoaAZoCWgPQwg3/G665VRyQJSGlFKUaBVNLgFoFkdAk+Fym65G0HV9lChoBmgJaA9DCABWR470rm9AlIaUUpRoFU1NAWgWR0CT4noEB8x9dX2UKGgGaAloD0MIEFg5tAhdcUCUhpRSlGgVTRUBaBZHQJPjb544ZMt1fZQoaAZoCWgPQwj3sBcKWMRwQJSGlFKUaBVNMwFoFkdAk+RPz4DcM3V9lChoBmgJaA9DCNGxg0pcxnFAlIaUUpRoFU0vAWgWR0CT5G7UXpGGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f30a1a7fcb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30a1a7fd40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30a1a7fdd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30a1a7fe60>", "_build": "<function ActorCriticPolicy._build at 0x7f30a1a7fef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f30a1a7ff80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30a1a84050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30a1a840e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f30a1a84170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30a1a84200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30a1a84290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30a1a84320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f30a1999390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680206156906116673, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAIIAQvlWZBT9403Y9fabRvvzB/70LJog9AAAAAAAAAAAAcJI76XJNvOKZvbtukbM8qrGuvYBBkT0AAIA/AACAP80Khrzh6u45K6ySvZ9QpbLw8jI80uRUsQAAgD8AAIA/M07cvJSalj9cQJ+9U1wqv4rfob1i6Lm9AAAAAAAAAAAzb6A9EqctPvYqrD2b9Z++XOOoPcQtAz0AAAAAAAAAAHrMAL4P4W0/UNKEvQ7lFL/aKz2+fn9CPQAAAAAAAAAAZmK9u9dVZzz87xY+Qh4ivrV4Qj2irPg8AAAAAAAAAADaGIw9vWKVPyBwtz5R7iq/Yt+4PRFRgT4AAAAAAAAAAECBtT1eJFg/EgW1PWMg+L6aD8w9CcEcvQAAAAAAAAAASDmYvnIaoz+2hCe/VbEjv8d98r6kXQK+AAAAAAAAAACAfLo9T5JDPxOITrpiMOm+sPFiPUoYQL0AAAAAAAAAABqx6D3HOwc+Emp+vqo6dL4fmIW9PQQNvQAAAAAAAAAAzbBwvFJw7rkc35s5OVsENR1+jTvYB7m4AACAPwAAgD/TzE4+ImeYPr3I6r5gxNm+SuPDPKybob4AAAAAAAAAAGBeNz5WEZE/UujAPtVoGb8vP2k+5bJNPgAAAAAAAAAAE+gzPshKsLzmTzA94JHLuxwPGr46iKy8AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRbk0fiGucUCUhpRSlIwBbJRNHAGMAXSUR0CcPLyEL6UJdX2UKGgGaAloD0MIjBNf7agpcECUhpRSlGgVS/VoFkdAnD3qS1Vo6HV9lChoBmgJaA9DCJvJN9vc7XJAlIaUUpRoFUvjaBZHQJw+IIWxhUl1fZQoaAZoCWgPQwgOvjCZapdwQJSGlFKUaBVL9WgWR0CcPjTBqKxcdX2UKGgGaAloD0MIc/c5Php0ckCUhpRSlGgVS8ZoFkdAnD7nnyNGVnV9lChoBmgJaA9DCOqzA64rUnFAlIaUUpRoFUvPaBZHQJw/G6QNkOJ1fZQoaAZoCWgPQwi4rwPnDMZyQJSGlFKUaBVLx2gWR0CcP5JdSl3ydX2UKGgGaAloD0MIdAmH3qKkckCUhpRSlGgVS9poFkdAnEADWsijcnV9lChoBmgJaA9DCCjRkseTRHNAlIaUUpRoFUvWaBZHQJxAQbVBlc11fZQoaAZoCWgPQwhzKhkAamxzQJSGlFKUaBVL8WgWR0CcQEHzpX6qdX2UKGgGaAloD0MICTICKhxYb0CUhpRSlGgVS+9oFkdAnEEX80k4WHV9lChoBmgJaA9DCL7bvHFSbHNAlIaUUpRoFU0CAWgWR0CcQU04R28qdX2UKGgGaAloD0MIxRwEHS1nckCUhpRSlGgVTQcBaBZHQJxCFWmxdIJ1fZQoaAZoCWgPQwgIq7GE9UhxQJSGlFKUaBVL+GgWR0CcQtCHymQ9dX2UKGgGaAloD0MIr9FyoAflbUCUhpRSlGgVS9ZoFkdAnEOYgaFVUHV9lChoBmgJaA9DCCkiwyreP3BAlIaUUpRoFUvgaBZHQJxDzI2fkFR1fZQoaAZoCWgPQwi7RsuB3hxyQJSGlFKUaBVL9WgWR0CcRCHLA57xdX2UKGgGaAloD0MIE30+yohcU0CUhpRSlGgVS5ZoFkdAnERFkMCtBHV9lChoBmgJaA9DCJIDdjW5JnJAlIaUUpRoFUvcaBZHQJxEoTg2qDN1fZQoaAZoCWgPQwjVIqKYvKJvQJSGlFKUaBVNdQFoFkdAnEVClzltCXV9lChoBmgJaA9DCAzLn28LjnJAlIaUUpRoFUvZaBZHQJxFa8XenAJ1fZQoaAZoCWgPQwihgVg2cy9zQJSGlFKUaBVL92gWR0CcRbu3MINWdX2UKGgGaAloD0MI4V8EjZn9cECUhpRSlGgVS9hoFkdAnEYufdyksXV9lChoBmgJaA9DCKOUEKxqMXFAlIaUUpRoFUvvaBZHQJxGofPomol1fZQoaAZoCWgPQwjs20lE+AhQQJSGlFKUaBVLsGgWR0CcR0gb6xgRdX2UKGgGaAloD0MIDECjdKn5cUCUhpRSlGgVS9VoFkdAnEeMxGlQ/HV9lChoBmgJaA9DCHhha7byY3JAlIaUUpRoFUvfaBZHQJxHmZeAuqZ1fZQoaAZoCWgPQwgsRl1r78JRQJSGlFKUaBVLnGgWR0CcSGlWfbsXdX2UKGgGaAloD0MIYaQXtbsTcECUhpRSlGgVS+FoFkdAnEl4k7fYSXV9lChoBmgJaA9DCH41BwjmrXFAlIaUUpRoFUvUaBZHQJxKCNfgJkZ1fZQoaAZoCWgPQwh3ZRcMrnxtQJSGlFKUaBVL42gWR0CcSsLidat+dX2UKGgGaAloD0MIf7xXrcw0cUCUhpRSlGgVS99oFkdAnEspBkZrHnV9lChoBmgJaA9DCA73kVvT3XFAlIaUUpRoFUvvaBZHQJxLPcXWOIZ1fZQoaAZoCWgPQwhq9dVVAWdyQJSGlFKUaBVL4mgWR0CccQOYplSTdX2UKGgGaAloD0MI7Z3RVmWrcUCUhpRSlGgVS99oFkdAnHEk21lXinV9lChoBmgJaA9DCFAYlGk0NXJAlIaUUpRoFUvaaBZHQJxxvjMmnfl1fZQoaAZoCWgPQwgOZhNgWJRwQJSGlFKUaBVLz2gWR0CccdU9IPK/dX2UKGgGaAloD0MIxr5k40Fzc0CUhpRSlGgVS/toFkdAnHIpSvTw2HV9lChoBmgJaA9DCH089N2tGnFAlIaUUpRoFUvlaBZHQJxzZkEs8Pp1fZQoaAZoCWgPQwhQHauUXm5yQJSGlFKUaBVL7mgWR0Ccc2c8DB/JdX2UKGgGaAloD0MITWn9LUE7cECUhpRSlGgVS+loFkdAnHRmxyGSIXV9lChoBmgJaA9DCKT8pNonrWVAlIaUUpRoFU3oA2gWR0CcdIYkE9t/dX2UKGgGaAloD0MITMRb5999cUCUhpRSlGgVS9loFkdAnHWOcQRPGnV9lChoBmgJaA9DCJUoe0s5yzVAlIaUUpRoFUuqaBZHQJx2FjXnQpp1fZQoaAZoCWgPQwiqDONukJxwQJSGlFKUaBVL2WgWR0CcdkVoYekpdX2UKGgGaAloD0MIhugQOFLRcECUhpRSlGgVS9JoFkdAnHaJmyxA0XV9lChoBmgJaA9DCEEpWrnXJHJAlIaUUpRoFU0YAWgWR0CcdqoXKr7wdX2UKGgGaAloD0MI8KMa9jsCcUCUhpRSlGgVS+ZoFkdAnHbyULUkOnV9lChoBmgJaA9DCC50JQKVT3BAlIaUUpRoFUvRaBZHQJx2/VmSQo11fZQoaAZoCWgPQwi6E+y/DghyQJSGlFKUaBVLvWgWR0CcdyV/tpmFdX2UKGgGaAloD0MIVIzzN+GSckCUhpRSlGgVS95oFkdAnHfaC17Y03V9lChoBmgJaA9DCAqGcw2z+HFAlIaUUpRoFUv4aBZHQJx460Y0l7d1fZQoaAZoCWgPQwj+nIL87GdkQJSGlFKUaBVN6ANoFkdAnHkYeDFqBXV9lChoBmgJaA9DCF9iLNOvVW9AlIaUUpRoFUvwaBZHQJx5nO8kD6p1fZQoaAZoCWgPQwjIXYQpCkJyQJSGlFKUaBVL8mgWR0Ccean752yLdX2UKGgGaAloD0MIvfxOkxmgb0CUhpRSlGgVS9JoFkdAnHm3FUADJXV9lChoBmgJaA9DCDiDv19MF3NAlIaUUpRoFUvoaBZHQJx6FsTFl051fZQoaAZoCWgPQwjKUBVTKaNxQJSGlFKUaBVL8mgWR0Cce4K2KEWZdX2UKGgGaAloD0MIdQRws3jccUCUhpRSlGgVS9JoFkdAnHumZAprlHV9lChoBmgJaA9DCEHw+PbuoXJAlIaUUpRoFUu+aBZHQJx7oUahpQF1fZQoaAZoCWgPQwjTakjco4RwQJSGlFKUaBVLwmgWR0Cce6++ueSTdX2UKGgGaAloD0MI/5JUpliWckCUhpRSlGgVS+9oFkdAnHvx3FDOT3V9lChoBmgJaA9DCHlZEwv83nJAlIaUUpRoFUvxaBZHQJx8LUXpGF11fZQoaAZoCWgPQwg3OXzSyTxzQJSGlFKUaBVL4mgWR0CcfCvjfek6dX2UKGgGaAloD0MIcqYJ248GcECUhpRSlGgVS8loFkdAnHy+fqX4TXV9lChoBmgJaA9DCJawNsYOB3JAlIaUUpRoFUvzaBZHQJx8/JdSl311fZQoaAZoCWgPQwimYmNeR/xQQJSGlFKUaBVLk2gWR0CcfYuOS4e+dX2UKGgGaAloD0MIznFuE250cECUhpRSlGgVS71oFkdAnH2Jnxri2nV9lChoBmgJaA9DCCAldm3vFnFAlIaUUpRoFUvVaBZHQJx96zD4xlB1fZQoaAZoCWgPQwhdxHdi1gRxQJSGlFKUaBVLw2gWR0CcfjaB7NSqdX2UKGgGaAloD0MIym5m9COpcUCUhpRSlGgVS+5oFkdAnH8PxUedTnV9lChoBmgJaA9DCIbj+Qyo6HBAlIaUUpRoFU0FAWgWR0Ccf6it7rs0dX2UKGgGaAloD0MILCy4HzDXcUCUhpRSlGgVS9hoFkdAnICRaPjn3nV9lChoBmgJaA9DCLfvUX89rXBAlIaUUpRoFUv5aBZHQJyBhZzPrv91fZQoaAZoCWgPQwjcLckBe/xwQJSGlFKUaBVLyGgWR0CcgYEVWS2ZdX2UKGgGaAloD0MI3jr/dpnJcECUhpRSlGgVTQsBaBZHQJyCbH5rP+p1fZQoaAZoCWgPQwh3EhH+xfFwQJSGlFKUaBVNBQFoFkdAnIKAtFrmAHV9lChoBmgJaA9DCDm1M0xtcXNAlIaUUpRoFU0NAWgWR0CcgrwFTvRadX2UKGgGaAloD0MIhQfNrnuVcECUhpRSlGgVS+NoFkdAnINV7Y02tXV9lChoBmgJaA9DCN/hdmiYRnFAlIaUUpRoFUvoaBZHQJyDeD28IzF1fZQoaAZoCWgPQwihLlIoS9hxQJSGlFKUaBVNAwFoFkdAnIOApz90inV9lChoBmgJaA9DCEiI8gWtHHFAlIaUUpRoFU1CAWgWR0Ccg6M0xdpqdX2UKGgGaAloD0MIjh8qjdizcUCUhpRSlGgVS/hoFkdAnIRSnpB5X3V9lChoBmgJaA9DCDrP2JesCXFAlIaUUpRoFUvFaBZHQJyEXfMwDeV1fZQoaAZoCWgPQwikGYumM6pvQJSGlFKUaBVL7GgWR0CchGAwfyPNdX2UKGgGaAloD0MI1m8mpssecUCUhpRSlGgVS+JoFkdAnIW5XEIgNnV9lChoBmgJaA9DCGeAC7Jl/1FAlIaUUpRoFUusaBZHQJyGIevIOpd1fZQoaAZoCWgPQwivQspPKnZzQJSGlFKUaBVNsAFoFkdAnIZLlJYkmnV9lChoBmgJaA9DCK+Xpgjw9GdAlIaUUpRoFU3oA2gWR0CchsKMNtqIdX2UKGgGaAloD0MI7L/OTRvgcUCUhpRSlGgVS+loFkdAnIbNGI9C/3V9lChoBmgJaA9DCC1cVmHzL3JAlIaUUpRoFUvOaBZHQJyHtd4Vym11fZQoaAZoCWgPQwj3yVGAqJlxQJSGlFKUaBVNBQFoFkdAnIhGVRk3CXV9lChoBmgJaA9DCLUy4Ze6fnJAlIaUUpRoFUvPaBZHQJyI35ZbILh1fZQoaAZoCWgPQwi6EoHq3w1zQJSGlFKUaBVL8mgWR0CciO2GqPwNdX2UKGgGaAloD0MI3LjF/BxmcUCUhpRSlGgVS+xoFkdAnIldsvZh8nV9lChoBmgJaA9DCMbhzK+m03FAlIaUUpRoFUvQaBZHQJyJthCtzS11fZQoaAZoCWgPQwjPoQxVcS5wQJSGlFKUaBVL82gWR0Ccib5sTFl1dX2UKGgGaAloD0MI+83EdKFOb0CUhpRSlGgVS/poFkdAnInlYZEUkHV9lChoBmgJaA9DCKN5AIu8C3FAlIaUUpRoFUvmaBZHQJyKQiSq2jR1fZQoaAZoCWgPQwgSaLCps3VwQJSGlFKUaBVL7WgWR0CcimKMvRJFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.89+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 09:11:42 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f53f5babc520d9e79a70edaff5881697cefc4559019700a166cf8407fb45ea50
|
3 |
+
size 147415
|
ppo-LunarLander-v2/data
CHANGED
@@ -1,29 +1,29 @@
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
"observation_space": {
|
25 |
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
-
":serialized:": "
|
27 |
"dtype": "float32",
|
28 |
"_shape": [
|
29 |
8
|
@@ -36,58 +36,58 @@
|
|
36 |
},
|
37 |
"action_space": {
|
38 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
-
":serialized:": "
|
40 |
"n": 4,
|
41 |
"_shape": [],
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
-
":serialized:": "
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f30a1a7fcb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30a1a7fd40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30a1a7fdd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30a1a7fe60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f30a1a7fef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f30a1a7ff80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30a1a84050>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30a1a840e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f30a1a84170>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30a1a84200>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30a1a84290>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30a1a84320>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f30a1999390>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
"observation_space": {
|
25 |
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
27 |
"dtype": "float32",
|
28 |
"_shape": [
|
29 |
8
|
|
|
36 |
},
|
37 |
"action_space": {
|
38 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
"n": 4,
|
41 |
"_shape": [],
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1507328,
|
47 |
+
"_total_timesteps": 1500000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1680206156906116673,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAIIAQvlWZBT9403Y9fabRvvzB/70LJog9AAAAAAAAAAAAcJI76XJNvOKZvbtukbM8qrGuvYBBkT0AAIA/AACAP80Khrzh6u45K6ySvZ9QpbLw8jI80uRUsQAAgD8AAIA/M07cvJSalj9cQJ+9U1wqv4rfob1i6Lm9AAAAAAAAAAAzb6A9EqctPvYqrD2b9Z++XOOoPcQtAz0AAAAAAAAAAHrMAL4P4W0/UNKEvQ7lFL/aKz2+fn9CPQAAAAAAAAAAZmK9u9dVZzz87xY+Qh4ivrV4Qj2irPg8AAAAAAAAAADaGIw9vWKVPyBwtz5R7iq/Yt+4PRFRgT4AAAAAAAAAAECBtT1eJFg/EgW1PWMg+L6aD8w9CcEcvQAAAAAAAAAASDmYvnIaoz+2hCe/VbEjv8d98r6kXQK+AAAAAAAAAACAfLo9T5JDPxOITrpiMOm+sPFiPUoYQL0AAAAAAAAAABqx6D3HOwc+Emp+vqo6dL4fmIW9PQQNvQAAAAAAAAAAzbBwvFJw7rkc35s5OVsENR1+jTvYB7m4AACAPwAAgD/TzE4+ImeYPr3I6r5gxNm+SuPDPKybob4AAAAAAAAAAGBeNz5WEZE/UujAPtVoGb8vP2k+5bJNPgAAAAAAAAAAE+gzPshKsLzmTzA94JHLuxwPGr46iKy8AACAPwAAgD+UdJRiLg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.004885333333333408,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gASVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRbk0fiGucUCUhpRSlIwBbJRNHAGMAXSUR0CcPLyEL6UJdX2UKGgGaAloD0MIjBNf7agpcECUhpRSlGgVS/VoFkdAnD3qS1Vo6HV9lChoBmgJaA9DCJvJN9vc7XJAlIaUUpRoFUvjaBZHQJw+IIWxhUl1fZQoaAZoCWgPQwgOvjCZapdwQJSGlFKUaBVL9WgWR0CcPjTBqKxcdX2UKGgGaAloD0MIc/c5Php0ckCUhpRSlGgVS8ZoFkdAnD7nnyNGVnV9lChoBmgJaA9DCOqzA64rUnFAlIaUUpRoFUvPaBZHQJw/G6QNkOJ1fZQoaAZoCWgPQwi4rwPnDMZyQJSGlFKUaBVLx2gWR0CcP5JdSl3ydX2UKGgGaAloD0MIdAmH3qKkckCUhpRSlGgVS9poFkdAnEADWsijcnV9lChoBmgJaA9DCCjRkseTRHNAlIaUUpRoFUvWaBZHQJxAQbVBlc11fZQoaAZoCWgPQwhzKhkAamxzQJSGlFKUaBVL8WgWR0CcQEHzpX6qdX2UKGgGaAloD0MICTICKhxYb0CUhpRSlGgVS+9oFkdAnEEX80k4WHV9lChoBmgJaA9DCL7bvHFSbHNAlIaUUpRoFU0CAWgWR0CcQU04R28qdX2UKGgGaAloD0MIxRwEHS1nckCUhpRSlGgVTQcBaBZHQJxCFWmxdIJ1fZQoaAZoCWgPQwgIq7GE9UhxQJSGlFKUaBVL+GgWR0CcQtCHymQ9dX2UKGgGaAloD0MIr9FyoAflbUCUhpRSlGgVS9ZoFkdAnEOYgaFVUHV9lChoBmgJaA9DCCkiwyreP3BAlIaUUpRoFUvgaBZHQJxDzI2fkFR1fZQoaAZoCWgPQwi7RsuB3hxyQJSGlFKUaBVL9WgWR0CcRCHLA57xdX2UKGgGaAloD0MIE30+yohcU0CUhpRSlGgVS5ZoFkdAnERFkMCtBHV9lChoBmgJaA9DCJIDdjW5JnJAlIaUUpRoFUvcaBZHQJxEoTg2qDN1fZQoaAZoCWgPQwjVIqKYvKJvQJSGlFKUaBVNdQFoFkdAnEVClzltCXV9lChoBmgJaA9DCAzLn28LjnJAlIaUUpRoFUvZaBZHQJxFa8XenAJ1fZQoaAZoCWgPQwihgVg2cy9zQJSGlFKUaBVL92gWR0CcRbu3MINWdX2UKGgGaAloD0MI4V8EjZn9cECUhpRSlGgVS9hoFkdAnEYufdyksXV9lChoBmgJaA9DCKOUEKxqMXFAlIaUUpRoFUvvaBZHQJxGofPomol1fZQoaAZoCWgPQwjs20lE+AhQQJSGlFKUaBVLsGgWR0CcR0gb6xgRdX2UKGgGaAloD0MIDECjdKn5cUCUhpRSlGgVS9VoFkdAnEeMxGlQ/HV9lChoBmgJaA9DCHhha7byY3JAlIaUUpRoFUvfaBZHQJxHmZeAuqZ1fZQoaAZoCWgPQwgsRl1r78JRQJSGlFKUaBVLnGgWR0CcSGlWfbsXdX2UKGgGaAloD0MIYaQXtbsTcECUhpRSlGgVS+FoFkdAnEl4k7fYSXV9lChoBmgJaA9DCH41BwjmrXFAlIaUUpRoFUvUaBZHQJxKCNfgJkZ1fZQoaAZoCWgPQwh3ZRcMrnxtQJSGlFKUaBVL42gWR0CcSsLidat+dX2UKGgGaAloD0MIf7xXrcw0cUCUhpRSlGgVS99oFkdAnEspBkZrHnV9lChoBmgJaA9DCA73kVvT3XFAlIaUUpRoFUvvaBZHQJxLPcXWOIZ1fZQoaAZoCWgPQwhq9dVVAWdyQJSGlFKUaBVL4mgWR0CccQOYplSTdX2UKGgGaAloD0MI7Z3RVmWrcUCUhpRSlGgVS99oFkdAnHEk21lXinV9lChoBmgJaA9DCFAYlGk0NXJAlIaUUpRoFUvaaBZHQJxxvjMmnfl1fZQoaAZoCWgPQwgOZhNgWJRwQJSGlFKUaBVLz2gWR0CccdU9IPK/dX2UKGgGaAloD0MIxr5k40Fzc0CUhpRSlGgVS/toFkdAnHIpSvTw2HV9lChoBmgJaA9DCH089N2tGnFAlIaUUpRoFUvlaBZHQJxzZkEs8Pp1fZQoaAZoCWgPQwhQHauUXm5yQJSGlFKUaBVL7mgWR0Ccc2c8DB/JdX2UKGgGaAloD0MITWn9LUE7cECUhpRSlGgVS+loFkdAnHRmxyGSIXV9lChoBmgJaA9DCKT8pNonrWVAlIaUUpRoFU3oA2gWR0CcdIYkE9t/dX2UKGgGaAloD0MITMRb5999cUCUhpRSlGgVS9loFkdAnHWOcQRPGnV9lChoBmgJaA9DCJUoe0s5yzVAlIaUUpRoFUuqaBZHQJx2FjXnQpp1fZQoaAZoCWgPQwiqDONukJxwQJSGlFKUaBVL2WgWR0CcdkVoYekpdX2UKGgGaAloD0MIhugQOFLRcECUhpRSlGgVS9JoFkdAnHaJmyxA0XV9lChoBmgJaA9DCEEpWrnXJHJAlIaUUpRoFU0YAWgWR0CcdqoXKr7wdX2UKGgGaAloD0MI8KMa9jsCcUCUhpRSlGgVS+ZoFkdAnHbyULUkOnV9lChoBmgJaA9DCC50JQKVT3BAlIaUUpRoFUvRaBZHQJx2/VmSQo11fZQoaAZoCWgPQwi6E+y/DghyQJSGlFKUaBVLvWgWR0CcdyV/tpmFdX2UKGgGaAloD0MIVIzzN+GSckCUhpRSlGgVS95oFkdAnHfaC17Y03V9lChoBmgJaA9DCAqGcw2z+HFAlIaUUpRoFUv4aBZHQJx460Y0l7d1fZQoaAZoCWgPQwj+nIL87GdkQJSGlFKUaBVN6ANoFkdAnHkYeDFqBXV9lChoBmgJaA9DCF9iLNOvVW9AlIaUUpRoFUvwaBZHQJx5nO8kD6p1fZQoaAZoCWgPQwjIXYQpCkJyQJSGlFKUaBVL8mgWR0Ccean752yLdX2UKGgGaAloD0MIvfxOkxmgb0CUhpRSlGgVS9JoFkdAnHm3FUADJXV9lChoBmgJaA9DCDiDv19MF3NAlIaUUpRoFUvoaBZHQJx6FsTFl051fZQoaAZoCWgPQwjKUBVTKaNxQJSGlFKUaBVL8mgWR0Cce4K2KEWZdX2UKGgGaAloD0MIdQRws3jccUCUhpRSlGgVS9JoFkdAnHumZAprlHV9lChoBmgJaA9DCEHw+PbuoXJAlIaUUpRoFUu+aBZHQJx7oUahpQF1fZQoaAZoCWgPQwjTakjco4RwQJSGlFKUaBVLwmgWR0Cce6++ueSTdX2UKGgGaAloD0MI/5JUpliWckCUhpRSlGgVS+9oFkdAnHvx3FDOT3V9lChoBmgJaA9DCHlZEwv83nJAlIaUUpRoFUvxaBZHQJx8LUXpGF11fZQoaAZoCWgPQwg3OXzSyTxzQJSGlFKUaBVL4mgWR0CcfCvjfek6dX2UKGgGaAloD0MIcqYJ248GcECUhpRSlGgVS8loFkdAnHy+fqX4TXV9lChoBmgJaA9DCJawNsYOB3JAlIaUUpRoFUvzaBZHQJx8/JdSl311fZQoaAZoCWgPQwimYmNeR/xQQJSGlFKUaBVLk2gWR0CcfYuOS4e+dX2UKGgGaAloD0MIznFuE250cECUhpRSlGgVS71oFkdAnH2Jnxri2nV9lChoBmgJaA9DCCAldm3vFnFAlIaUUpRoFUvVaBZHQJx96zD4xlB1fZQoaAZoCWgPQwhdxHdi1gRxQJSGlFKUaBVLw2gWR0CcfjaB7NSqdX2UKGgGaAloD0MIym5m9COpcUCUhpRSlGgVS+5oFkdAnH8PxUedTnV9lChoBmgJaA9DCIbj+Qyo6HBAlIaUUpRoFU0FAWgWR0Ccf6it7rs0dX2UKGgGaAloD0MILCy4HzDXcUCUhpRSlGgVS9hoFkdAnICRaPjn3nV9lChoBmgJaA9DCLfvUX89rXBAlIaUUpRoFUv5aBZHQJyBhZzPrv91fZQoaAZoCWgPQwjcLckBe/xwQJSGlFKUaBVLyGgWR0CcgYEVWS2ZdX2UKGgGaAloD0MI3jr/dpnJcECUhpRSlGgVTQsBaBZHQJyCbH5rP+p1fZQoaAZoCWgPQwh3EhH+xfFwQJSGlFKUaBVNBQFoFkdAnIKAtFrmAHV9lChoBmgJaA9DCDm1M0xtcXNAlIaUUpRoFU0NAWgWR0CcgrwFTvRadX2UKGgGaAloD0MIhQfNrnuVcECUhpRSlGgVS+NoFkdAnINV7Y02tXV9lChoBmgJaA9DCN/hdmiYRnFAlIaUUpRoFUvoaBZHQJyDeD28IzF1fZQoaAZoCWgPQwihLlIoS9hxQJSGlFKUaBVNAwFoFkdAnIOApz90inV9lChoBmgJaA9DCEiI8gWtHHFAlIaUUpRoFU1CAWgWR0Ccg6M0xdpqdX2UKGgGaAloD0MIjh8qjdizcUCUhpRSlGgVS/hoFkdAnIRSnpB5X3V9lChoBmgJaA9DCDrP2JesCXFAlIaUUpRoFUvFaBZHQJyEXfMwDeV1fZQoaAZoCWgPQwikGYumM6pvQJSGlFKUaBVL7GgWR0CchGAwfyPNdX2UKGgGaAloD0MI1m8mpssecUCUhpRSlGgVS+JoFkdAnIW5XEIgNnV9lChoBmgJaA9DCGeAC7Jl/1FAlIaUUpRoFUusaBZHQJyGIevIOpd1fZQoaAZoCWgPQwivQspPKnZzQJSGlFKUaBVNsAFoFkdAnIZLlJYkmnV9lChoBmgJaA9DCK+Xpgjw9GdAlIaUUpRoFU3oA2gWR0CchsKMNtqIdX2UKGgGaAloD0MI7L/OTRvgcUCUhpRSlGgVS+loFkdAnIbNGI9C/3V9lChoBmgJaA9DCC1cVmHzL3JAlIaUUpRoFUvOaBZHQJyHtd4Vym11fZQoaAZoCWgPQwj3yVGAqJlxQJSGlFKUaBVNBQFoFkdAnIhGVRk3CXV9lChoBmgJaA9DCLUy4Ze6fnJAlIaUUpRoFUvPaBZHQJyI35ZbILh1fZQoaAZoCWgPQwi6EoHq3w1zQJSGlFKUaBVL8mgWR0CciO2GqPwNdX2UKGgGaAloD0MI3LjF/BxmcUCUhpRSlGgVS+xoFkdAnIldsvZh8nV9lChoBmgJaA9DCMbhzK+m03FAlIaUUpRoFUvQaBZHQJyJthCtzS11fZQoaAZoCWgPQwjPoQxVcS5wQJSGlFKUaBVL82gWR0Ccib5sTFl1dX2UKGgGaAloD0MI+83EdKFOb0CUhpRSlGgVS/poFkdAnInlYZEUkHV9lChoBmgJaA9DCKN5AIu8C3FAlIaUUpRoFUvmaBZHQJyKQiSq2jR1fZQoaAZoCWgPQwgSaLCps3VwQJSGlFKUaBVL7WgWR0CcimKMvRJFdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 368,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea1dac6a63f41aa7ea48b6c7a523f090e9683f396ca614639a7a32f6dd0496d5
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e9ed0ec4b61262e13fc992608ae37e71a416bf27465a1a8ab1a5c331216b290
|
3 |
size 43393
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
-
- PyTorch: 1.13.
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.89+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 09:11:42 UTC 2023
|
2 |
+
- Python: 3.7.12
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 277.80826899772376, "std_reward": 26.545912793061376, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-30T20:43:38.420383"}
|