sergiparra commited on
Commit
d12b814
1 Parent(s): 4338186

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cord-layoutlmv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-cord_100
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cord-layoutlmv3
20
+ type: cord-layoutlmv3
21
+ config: cord
22
+ split: train
23
+ args: cord
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9349593495934959
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9468562874251497
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9408702119747119
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9473684210526315
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-cord_100
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.2702
47
+ - Precision: 0.9350
48
+ - Recall: 0.9469
49
+ - F1: 0.9409
50
+ - Accuracy: 0.9474
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 5
71
+ - eval_batch_size: 5
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 2500
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 4.17 | 250 | 1.0496 | 0.6714 | 0.7507 | 0.7088 | 0.7746 |
82
+ | 1.4245 | 8.33 | 500 | 0.5492 | 0.8401 | 0.8728 | 0.8561 | 0.8735 |
83
+ | 1.4245 | 12.5 | 750 | 0.3773 | 0.8934 | 0.9162 | 0.9047 | 0.9240 |
84
+ | 0.3461 | 16.67 | 1000 | 0.3212 | 0.9287 | 0.9364 | 0.9325 | 0.9380 |
85
+ | 0.3461 | 20.83 | 1250 | 0.2888 | 0.9276 | 0.9401 | 0.9338 | 0.9440 |
86
+ | 0.1502 | 25.0 | 1500 | 0.2749 | 0.9299 | 0.9431 | 0.9365 | 0.9474 |
87
+ | 0.1502 | 29.17 | 1750 | 0.2741 | 0.9321 | 0.9446 | 0.9383 | 0.9469 |
88
+ | 0.0866 | 33.33 | 2000 | 0.2715 | 0.9328 | 0.9454 | 0.9390 | 0.9465 |
89
+ | 0.0866 | 37.5 | 2250 | 0.2740 | 0.9314 | 0.9446 | 0.9379 | 0.9452 |
90
+ | 0.0635 | 41.67 | 2500 | 0.2702 | 0.9350 | 0.9469 | 0.9409 | 0.9474 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.25.1
96
+ - Pytorch 1.13.0+cu116
97
+ - Datasets 2.8.0
98
+ - Tokenizers 0.13.2