sergey-antonov commited on
Commit
c808aa9
1 Parent(s): abb6b2b

Upload . with huggingface_hub

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
.summary/0/events.out.tfevents.1679842604.debian ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f6ef1512af92c5d2ed23977c5aab37d1d0319ca7892eaf63fe1a67a4c4f2068
3
+ size 40
.summary/0/events.out.tfevents.1679842606.debian ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9066e75831695739280e51dcf4b1d3812e95973932e7164324f974cee36a9c3
3
+ size 40
.summary/0/events.out.tfevents.1679842923.debian ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9483f0cb5f8d398273b504a82631c440dcb02534520e2885ffe9b4473d5f55d8
3
+ size 22503
.summary/0/events.out.tfevents.1679843004.debian ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:503248f8d2fe85b030ef4cbb57c38bd31026c4cd783dade323d07da2d17cc9cd
3
+ size 110
.summary/0/events.out.tfevents.1679843115.debian ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b74bb9649a10bcc2e6df5aa27595f97da062b1153b309f6d253e9c619b6e218
3
+ size 133552
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: doom_health_gathering_supreme
15
+ type: doom_health_gathering_supreme
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 13.66 +/- 5.39
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r sergey-antonov/rl_course_vizdoom_health_gathering_supreme
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000824_3375104_reward_24.707.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b14fb43b0b71abf0d0240184b0c9116d98942fe224819d6bd02128ecc4ccbb1
3
+ size 34928806
checkpoint_p0/checkpoint_000000824_3375104.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10245483978c1dde455e59fc7b2b8c8547b64eb2ed29c3c7b09e20037e82220a
3
+ size 34929220
checkpoint_p0/checkpoint_000000978_4005888.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c920264d5adf2eab8d0eb5c437fdd462ea7393a3804d5aae33d3433eb18f5ac1
3
+ size 34929220
config.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "doom_health_gathering_supreme",
5
+ "experiment": "default_experiment",
6
+ "train_dir": "/home/hit/nnet/hf/rl/unit9/train_dir",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 1,
11
+ "async_rl": true,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 2,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 4,
20
+ "batch_size": 1024,
21
+ "num_batches_per_epoch": 1,
22
+ "num_epochs": 1,
23
+ "rollout": 32,
24
+ "recurrence": 32,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1.0,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": false,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.001,
32
+ "value_loss_coeff": 0.5,
33
+ "kl_loss_coeff": 0.0,
34
+ "exploration_loss": "symmetric_kl",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.1,
37
+ "ppo_clip_value": 0.2,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 4.0,
46
+ "learning_rate": 0.0001,
47
+ "lr_schedule": "constant",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 255.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [],
58
+ "set_workers_cpu_affinity": true,
59
+ "force_envs_single_thread": false,
60
+ "default_niceness": 0,
61
+ "log_to_file": true,
62
+ "experiment_summaries_interval": 10,
63
+ "flush_summaries_interval": 30,
64
+ "stats_avg": 100,
65
+ "summaries_use_frameskip": true,
66
+ "heartbeat_interval": 20,
67
+ "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 4000000,
69
+ "train_for_seconds": 10000000000,
70
+ "save_every_sec": 120,
71
+ "keep_checkpoints": 2,
72
+ "load_checkpoint_kind": "latest",
73
+ "save_milestones_sec": -1,
74
+ "save_best_every_sec": 5,
75
+ "save_best_metric": "reward",
76
+ "save_best_after": 100000,
77
+ "benchmark": false,
78
+ "encoder_mlp_layers": [
79
+ 512,
80
+ 512
81
+ ],
82
+ "encoder_conv_architecture": "convnet_simple",
83
+ "encoder_conv_mlp_layers": [
84
+ 512
85
+ ],
86
+ "use_rnn": true,
87
+ "rnn_size": 512,
88
+ "rnn_type": "gru",
89
+ "rnn_num_layers": 1,
90
+ "decoder_mlp_layers": [],
91
+ "nonlinearity": "elu",
92
+ "policy_initialization": "orthogonal",
93
+ "policy_init_gain": 1.0,
94
+ "actor_critic_share_weights": true,
95
+ "adaptive_stddev": true,
96
+ "continuous_tanh_scale": 0.0,
97
+ "initial_stddev": 1.0,
98
+ "use_env_info_cache": false,
99
+ "env_gpu_actions": false,
100
+ "env_gpu_observations": true,
101
+ "env_frameskip": 4,
102
+ "env_framestack": 1,
103
+ "pixel_format": "CHW",
104
+ "use_record_episode_statistics": false,
105
+ "with_wandb": false,
106
+ "wandb_user": null,
107
+ "wandb_project": "sample_factory",
108
+ "wandb_group": null,
109
+ "wandb_job_type": "SF",
110
+ "wandb_tags": [],
111
+ "with_pbt": false,
112
+ "pbt_mix_policies_in_one_env": true,
113
+ "pbt_period_env_steps": 5000000,
114
+ "pbt_start_mutation": 20000000,
115
+ "pbt_replace_fraction": 0.3,
116
+ "pbt_mutation_rate": 0.15,
117
+ "pbt_replace_reward_gap": 0.1,
118
+ "pbt_replace_reward_gap_absolute": 1e-06,
119
+ "pbt_optimize_gamma": false,
120
+ "pbt_target_objective": "true_objective",
121
+ "pbt_perturb_min": 1.1,
122
+ "pbt_perturb_max": 1.5,
123
+ "num_agents": -1,
124
+ "num_humans": 0,
125
+ "num_bots": -1,
126
+ "start_bot_difficulty": null,
127
+ "timelimit": null,
128
+ "res_w": 128,
129
+ "res_h": 72,
130
+ "wide_aspect_ratio": false,
131
+ "eval_env_frameskip": 1,
132
+ "fps": 35,
133
+ "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
134
+ "cli_args": {
135
+ "env": "doom_health_gathering_supreme",
136
+ "num_workers": 8,
137
+ "num_envs_per_worker": 4,
138
+ "train_for_env_steps": 4000000
139
+ },
140
+ "git_hash": "unknown",
141
+ "git_repo_name": "not a git repository"
142
+ }
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:113ed927245d13f8646a38b71b2961005745c4661119af9e7484b725994ba5e5
3
+ size 26803448
sf_log.txt ADDED
@@ -0,0 +1,1236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-03-26 18:02:05,029][28680] Saving configuration to /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/config.json...
2
+ [2023-03-26 18:02:05,029][28680] Rollout worker 0 uses device cpu
3
+ [2023-03-26 18:02:05,029][28680] Rollout worker 1 uses device cpu
4
+ [2023-03-26 18:02:05,029][28680] Rollout worker 2 uses device cpu
5
+ [2023-03-26 18:02:05,029][28680] Rollout worker 3 uses device cpu
6
+ [2023-03-26 18:02:05,030][28680] Rollout worker 4 uses device cpu
7
+ [2023-03-26 18:02:05,030][28680] Rollout worker 5 uses device cpu
8
+ [2023-03-26 18:02:05,030][28680] Rollout worker 6 uses device cpu
9
+ [2023-03-26 18:02:05,030][28680] Rollout worker 7 uses device cpu
10
+ [2023-03-26 18:02:05,063][28680] Using GPUs [0] for process 0 (actually maps to GPUs [0])
11
+ [2023-03-26 18:02:05,063][28680] InferenceWorker_p0-w0: min num requests: 2
12
+ [2023-03-26 18:02:05,081][28680] Starting all processes...
13
+ [2023-03-26 18:02:05,081][28680] Starting process learner_proc0
14
+ [2023-03-26 18:02:05,978][28680] Starting all processes...
15
+ [2023-03-26 18:02:05,980][28695] Using GPUs [0] for process 0 (actually maps to GPUs [0])
16
+ [2023-03-26 18:02:05,981][28695] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
17
+ [2023-03-26 18:02:05,981][28680] Starting process inference_proc0-0
18
+ [2023-03-26 18:02:05,981][28680] Starting process rollout_proc0
19
+ [2023-03-26 18:02:05,981][28680] Starting process rollout_proc1
20
+ [2023-03-26 18:02:05,981][28680] Starting process rollout_proc2
21
+ [2023-03-26 18:02:05,981][28680] Starting process rollout_proc3
22
+ [2023-03-26 18:02:05,983][28680] Starting process rollout_proc4
23
+ [2023-03-26 18:02:05,985][28680] Starting process rollout_proc5
24
+ [2023-03-26 18:02:05,990][28695] Num visible devices: 1
25
+ [2023-03-26 18:02:05,985][28680] Starting process rollout_proc6
26
+ [2023-03-26 18:02:05,986][28680] Starting process rollout_proc7
27
+ [2023-03-26 18:02:06,017][28695] Starting seed is not provided
28
+ [2023-03-26 18:02:06,017][28695] Using GPUs [0] for process 0 (actually maps to GPUs [0])
29
+ [2023-03-26 18:02:06,017][28695] Initializing actor-critic model on device cuda:0
30
+ [2023-03-26 18:02:06,018][28695] RunningMeanStd input shape: (3, 72, 128)
31
+ [2023-03-26 18:02:06,018][28695] RunningMeanStd input shape: (1,)
32
+ [2023-03-26 18:02:06,026][28695] ConvEncoder: input_channels=3
33
+ [2023-03-26 18:02:06,137][28695] Conv encoder output size: 512
34
+ [2023-03-26 18:02:06,137][28695] Policy head output size: 512
35
+ [2023-03-26 18:02:06,162][28695] Created Actor Critic model with architecture:
36
+ [2023-03-26 18:02:06,163][28695] ActorCriticSharedWeights(
37
+ (obs_normalizer): ObservationNormalizer(
38
+ (running_mean_std): RunningMeanStdDictInPlace(
39
+ (running_mean_std): ModuleDict(
40
+ (obs): RunningMeanStdInPlace()
41
+ )
42
+ )
43
+ )
44
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
45
+ (encoder): VizdoomEncoder(
46
+ (basic_encoder): ConvEncoder(
47
+ (enc): RecursiveScriptModule(
48
+ original_name=ConvEncoderImpl
49
+ (conv_head): RecursiveScriptModule(
50
+ original_name=Sequential
51
+ (0): RecursiveScriptModule(original_name=Conv2d)
52
+ (1): RecursiveScriptModule(original_name=ELU)
53
+ (2): RecursiveScriptModule(original_name=Conv2d)
54
+ (3): RecursiveScriptModule(original_name=ELU)
55
+ (4): RecursiveScriptModule(original_name=Conv2d)
56
+ (5): RecursiveScriptModule(original_name=ELU)
57
+ )
58
+ (mlp_layers): RecursiveScriptModule(
59
+ original_name=Sequential
60
+ (0): RecursiveScriptModule(original_name=Linear)
61
+ (1): RecursiveScriptModule(original_name=ELU)
62
+ )
63
+ )
64
+ )
65
+ )
66
+ (core): ModelCoreRNN(
67
+ (core): GRU(512, 512)
68
+ )
69
+ (decoder): MlpDecoder(
70
+ (mlp): Identity()
71
+ )
72
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
73
+ (action_parameterization): ActionParameterizationDefault(
74
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
75
+ )
76
+ )
77
+ [2023-03-26 18:02:07,157][28712] Worker 3 uses CPU cores [6, 7]
78
+ [2023-03-26 18:02:07,190][28730] Worker 6 uses CPU cores [12, 13]
79
+ [2023-03-26 18:02:07,193][28708] Worker 0 uses CPU cores [0, 1]
80
+ [2023-03-26 18:02:07,200][28709] Worker 1 uses CPU cores [2, 3]
81
+ [2023-03-26 18:02:07,256][28710] Using GPUs [0] for process 0 (actually maps to GPUs [0])
82
+ [2023-03-26 18:02:07,256][28710] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
83
+ [2023-03-26 18:02:07,266][28710] Num visible devices: 1
84
+ [2023-03-26 18:02:07,330][28731] Worker 7 uses CPU cores [14, 15]
85
+ [2023-03-26 18:02:07,358][28711] Worker 2 uses CPU cores [4, 5]
86
+ [2023-03-26 18:02:07,465][28713] Worker 4 uses CPU cores [8, 9]
87
+ [2023-03-26 18:02:07,498][28729] Worker 5 uses CPU cores [10, 11]
88
+ [2023-03-26 18:02:08,648][28695] Using optimizer <class 'torch.optim.adam.Adam'>
89
+ [2023-03-26 18:02:08,649][28695] No checkpoints found
90
+ [2023-03-26 18:02:08,649][28695] Did not load from checkpoint, starting from scratch!
91
+ [2023-03-26 18:02:08,649][28695] Initialized policy 0 weights for model version 0
92
+ [2023-03-26 18:02:08,650][28695] LearnerWorker_p0 finished initialization!
93
+ [2023-03-26 18:02:08,651][28695] Using GPUs [0] for process 0 (actually maps to GPUs [0])
94
+ [2023-03-26 18:02:08,759][28710] RunningMeanStd input shape: (3, 72, 128)
95
+ [2023-03-26 18:02:08,760][28710] RunningMeanStd input shape: (1,)
96
+ [2023-03-26 18:02:08,767][28710] ConvEncoder: input_channels=3
97
+ [2023-03-26 18:02:08,842][28710] Conv encoder output size: 512
98
+ [2023-03-26 18:02:08,842][28710] Policy head output size: 512
99
+ [2023-03-26 18:02:09,444][28680] Inference worker 0-0 is ready!
100
+ [2023-03-26 18:02:09,444][28680] All inference workers are ready! Signal rollout workers to start!
101
+ [2023-03-26 18:02:09,485][28708] Doom resolution: 160x120, resize resolution: (128, 72)
102
+ [2023-03-26 18:02:09,485][28709] Doom resolution: 160x120, resize resolution: (128, 72)
103
+ [2023-03-26 18:02:09,485][28729] Doom resolution: 160x120, resize resolution: (128, 72)
104
+ [2023-03-26 18:02:09,485][28711] Doom resolution: 160x120, resize resolution: (128, 72)
105
+ [2023-03-26 18:02:09,485][28730] Doom resolution: 160x120, resize resolution: (128, 72)
106
+ [2023-03-26 18:02:09,491][28731] Doom resolution: 160x120, resize resolution: (128, 72)
107
+ [2023-03-26 18:02:09,492][28713] Doom resolution: 160x120, resize resolution: (128, 72)
108
+ [2023-03-26 18:02:09,492][28712] Doom resolution: 160x120, resize resolution: (128, 72)
109
+ [2023-03-26 18:02:09,634][28708] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
110
+ [2023-03-26 18:02:09,634][28712] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
111
+ [2023-03-26 18:02:09,634][28709] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
112
+ [2023-03-26 18:02:09,634][28729] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
113
+ [2023-03-26 18:02:09,635][28712] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
114
+ Traceback (most recent call last):
115
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
116
+ self.game.init()
117
+ vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
118
+
119
+ During handling of the above exception, another exception occurred:
120
+
121
+ Traceback (most recent call last):
122
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
123
+ slot_callable(*args)
124
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
125
+ env_runner.init(self.timing)
126
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
127
+ self._reset()
128
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
129
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
130
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
131
+ return self.env.reset(**kwargs)
132
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
133
+ obs, info = self.env.reset(**kwargs)
134
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
135
+ obs, info = self.env.reset(**kwargs)
136
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
137
+ return self.env.reset(**kwargs)
138
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 379, in reset
139
+ obs, info = self.env.reset(**kwargs)
140
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
141
+ obs, info = self.env.reset(**kwargs)
142
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
143
+ return self.env.reset(**kwargs)
144
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
145
+ return self.env.reset(**kwargs)
146
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
147
+ self._ensure_initialized()
148
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
149
+ self.initialize()
150
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
151
+ self._game_init()
152
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
153
+ raise EnvCriticalError()
154
+ sample_factory.envs.env_utils.EnvCriticalError
155
+ [2023-03-26 18:02:09,635][28708] EvtLoop [rollout_proc0_evt_loop, process=rollout_proc0] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
156
+ Traceback (most recent call last):
157
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
158
+ self.game.init()
159
+ vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
160
+
161
+ During handling of the above exception, another exception occurred:
162
+
163
+ Traceback (most recent call last):
164
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
165
+ slot_callable(*args)
166
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
167
+ env_runner.init(self.timing)
168
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
169
+ self._reset()
170
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
171
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
172
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
173
+ return self.env.reset(**kwargs)
174
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
175
+ obs, info = self.env.reset(**kwargs)
176
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
177
+ obs, info = self.env.reset(**kwargs)
178
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
179
+ return self.env.reset(**kwargs)
180
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 379, in reset
181
+ obs, info = self.env.reset(**kwargs)
182
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
183
+ obs, info = self.env.reset(**kwargs)
184
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
185
+ return self.env.reset(**kwargs)
186
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
187
+ return self.env.reset(**kwargs)
188
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
189
+ self._ensure_initialized()
190
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
191
+ self.initialize()
192
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
193
+ self._game_init()
194
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
195
+ raise EnvCriticalError()
196
+ sample_factory.envs.env_utils.EnvCriticalError
197
+ [2023-03-26 18:02:09,635][28709] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
198
+ Traceback (most recent call last):
199
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
200
+ self.game.init()
201
+ vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
202
+
203
+ During handling of the above exception, another exception occurred:
204
+
205
+ Traceback (most recent call last):
206
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
207
+ slot_callable(*args)
208
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
209
+ env_runner.init(self.timing)
210
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
211
+ self._reset()
212
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
213
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
214
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
215
+ return self.env.reset(**kwargs)
216
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
217
+ obs, info = self.env.reset(**kwargs)
218
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
219
+ obs, info = self.env.reset(**kwargs)
220
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
221
+ return self.env.reset(**kwargs)
222
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 379, in reset
223
+ obs, info = self.env.reset(**kwargs)
224
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
225
+ obs, info = self.env.reset(**kwargs)
226
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
227
+ return self.env.reset(**kwargs)
228
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
229
+ return self.env.reset(**kwargs)
230
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
231
+ self._ensure_initialized()
232
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
233
+ self.initialize()
234
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
235
+ self._game_init()
236
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
237
+ raise EnvCriticalError()
238
+ sample_factory.envs.env_utils.EnvCriticalError
239
+ [2023-03-26 18:02:09,635][28729] EvtLoop [rollout_proc5_evt_loop, process=rollout_proc5] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
240
+ Traceback (most recent call last):
241
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
242
+ self.game.init()
243
+ vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
244
+
245
+ During handling of the above exception, another exception occurred:
246
+
247
+ Traceback (most recent call last):
248
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
249
+ slot_callable(*args)
250
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
251
+ env_runner.init(self.timing)
252
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
253
+ self._reset()
254
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
255
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
256
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
257
+ return self.env.reset(**kwargs)
258
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
259
+ obs, info = self.env.reset(**kwargs)
260
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
261
+ obs, info = self.env.reset(**kwargs)
262
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
263
+ return self.env.reset(**kwargs)
264
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 379, in reset
265
+ obs, info = self.env.reset(**kwargs)
266
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
267
+ obs, info = self.env.reset(**kwargs)
268
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
269
+ return self.env.reset(**kwargs)
270
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
271
+ return self.env.reset(**kwargs)
272
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
273
+ self._ensure_initialized()
274
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
275
+ self.initialize()
276
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
277
+ self._game_init()
278
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
279
+ raise EnvCriticalError()
280
+ sample_factory.envs.env_utils.EnvCriticalError
281
+ [2023-03-26 18:02:09,638][28712] Unhandled exception in evt loop rollout_proc3_evt_loop
282
+ [2023-03-26 18:02:09,638][28708] Unhandled exception in evt loop rollout_proc0_evt_loop
283
+ [2023-03-26 18:02:09,638][28709] Unhandled exception in evt loop rollout_proc1_evt_loop
284
+ [2023-03-26 18:02:09,638][28729] Unhandled exception in evt loop rollout_proc5_evt_loop
285
+ [2023-03-26 18:02:09,838][28713] Decorrelating experience for 0 frames...
286
+ [2023-03-26 18:02:09,839][28731] Decorrelating experience for 0 frames...
287
+ [2023-03-26 18:02:09,847][28730] Decorrelating experience for 0 frames...
288
+ [2023-03-26 18:02:09,847][28711] Decorrelating experience for 0 frames...
289
+ [2023-03-26 18:02:10,023][28711] Decorrelating experience for 32 frames...
290
+ [2023-03-26 18:02:10,023][28730] Decorrelating experience for 32 frames...
291
+ [2023-03-26 18:02:10,026][28713] Decorrelating experience for 32 frames...
292
+ [2023-03-26 18:02:10,222][28731] Decorrelating experience for 32 frames...
293
+ [2023-03-26 18:02:10,236][28713] Decorrelating experience for 64 frames...
294
+ [2023-03-26 18:02:10,237][28730] Decorrelating experience for 64 frames...
295
+ [2023-03-26 18:02:10,238][28711] Decorrelating experience for 64 frames...
296
+ [2023-03-26 18:02:10,412][28731] Decorrelating experience for 64 frames...
297
+ [2023-03-26 18:02:10,428][28713] Decorrelating experience for 96 frames...
298
+ [2023-03-26 18:02:10,430][28730] Decorrelating experience for 96 frames...
299
+ [2023-03-26 18:02:10,608][28731] Decorrelating experience for 96 frames...
300
+ [2023-03-26 18:02:10,631][28711] Decorrelating experience for 96 frames...
301
+ [2023-03-26 18:02:11,738][28695] Signal inference workers to stop experience collection...
302
+ [2023-03-26 18:02:11,741][28710] InferenceWorker_p0-w0: stopping experience collection
303
+ [2023-03-26 18:02:12,665][28695] Signal inference workers to resume experience collection...
304
+ [2023-03-26 18:02:12,666][28710] InferenceWorker_p0-w0: resuming experience collection
305
+ [2023-03-26 18:02:13,122][28680] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4096. Throughput: 0: nan. Samples: 2232. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
306
+ [2023-03-26 18:02:13,122][28680] Avg episode reward: [(0, '3.506')]
307
+ [2023-03-26 18:02:15,674][28710] Updated weights for policy 0, policy_version 10 (0.0258)
308
+ [2023-03-26 18:02:18,122][28680] Fps is (10 sec: 13926.5, 60 sec: 13926.5, 300 sec: 13926.5). Total num frames: 73728. Throughput: 0: 1578.8. Samples: 10126. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
309
+ [2023-03-26 18:02:18,122][28680] Avg episode reward: [(0, '4.262')]
310
+ [2023-03-26 18:02:18,512][28710] Updated weights for policy 0, policy_version 20 (0.0005)
311
+ [2023-03-26 18:02:21,007][28710] Updated weights for policy 0, policy_version 30 (0.0006)
312
+ [2023-03-26 18:02:23,122][28680] Fps is (10 sec: 14745.7, 60 sec: 14745.7, 300 sec: 14745.7). Total num frames: 151552. Throughput: 0: 3076.4. Samples: 32996. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
313
+ [2023-03-26 18:02:23,122][28680] Avg episode reward: [(0, '4.314')]
314
+ [2023-03-26 18:02:23,126][28695] Saving new best policy, reward=4.314!
315
+ [2023-03-26 18:02:23,987][28710] Updated weights for policy 0, policy_version 40 (0.0006)
316
+ [2023-03-26 18:02:25,057][28680] Heartbeat connected on Batcher_0
317
+ [2023-03-26 18:02:25,060][28680] Heartbeat connected on LearnerWorker_p0
318
+ [2023-03-26 18:02:25,066][28680] Heartbeat connected on InferenceWorker_p0-w0
319
+ [2023-03-26 18:02:25,071][28680] Heartbeat connected on RolloutWorker_w2
320
+ [2023-03-26 18:02:25,076][28680] Heartbeat connected on RolloutWorker_w4
321
+ [2023-03-26 18:02:25,078][28680] Heartbeat connected on RolloutWorker_w6
322
+ [2023-03-26 18:02:25,081][28680] Heartbeat connected on RolloutWorker_w7
323
+ [2023-03-26 18:02:26,686][28710] Updated weights for policy 0, policy_version 50 (0.0006)
324
+ [2023-03-26 18:02:28,122][28680] Fps is (10 sec: 15155.1, 60 sec: 14745.6, 300 sec: 14745.6). Total num frames: 225280. Throughput: 0: 3488.9. Samples: 54566. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
325
+ [2023-03-26 18:02:28,122][28680] Avg episode reward: [(0, '4.403')]
326
+ [2023-03-26 18:02:28,123][28695] Saving new best policy, reward=4.403!
327
+ [2023-03-26 18:02:29,415][28710] Updated weights for policy 0, policy_version 60 (0.0006)
328
+ [2023-03-26 18:02:31,832][28710] Updated weights for policy 0, policy_version 70 (0.0006)
329
+ [2023-03-26 18:02:32,422][28711] EvtLoop [rollout_proc2_evt_loop, process=rollout_proc2] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance2'), args=(1, 0)
330
+ Traceback (most recent call last):
331
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
332
+ slot_callable(*args)
333
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
334
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
335
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
336
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
337
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
338
+ return self.env.step(action)
339
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
340
+ obs, rew, terminated, truncated, info = self.env.step(action)
341
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
342
+ obs, rew, terminated, truncated, info = self.env.step(action)
343
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
344
+ observation, reward, terminated, truncated, info = self.env.step(action)
345
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 384, in step
346
+ observation, reward, terminated, truncated, info = self.env.step(action)
347
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 88, in step
348
+ obs, reward, terminated, truncated, info = self.env.step(action)
349
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
350
+ return self.env.step(action)
351
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
352
+ obs, reward, terminated, truncated, info = self.env.step(action)
353
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
354
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
355
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
356
+ [2023-03-26 18:02:32,422][28713] EvtLoop [rollout_proc4_evt_loop, process=rollout_proc4] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance4'), args=(1, 0)
357
+ Traceback (most recent call last):
358
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
359
+ slot_callable(*args)
360
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
361
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
362
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
363
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
364
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
365
+ return self.env.step(action)
366
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
367
+ obs, rew, terminated, truncated, info = self.env.step(action)
368
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
369
+ obs, rew, terminated, truncated, info = self.env.step(action)
370
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
371
+ observation, reward, terminated, truncated, info = self.env.step(action)
372
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 384, in step
373
+ observation, reward, terminated, truncated, info = self.env.step(action)
374
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 88, in step
375
+ obs, reward, terminated, truncated, info = self.env.step(action)
376
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
377
+ return self.env.step(action)
378
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
379
+ obs, reward, terminated, truncated, info = self.env.step(action)
380
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
381
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
382
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
383
+ [2023-03-26 18:02:32,426][28711] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc2_evt_loop
384
+ [2023-03-26 18:02:32,426][28713] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc4_evt_loop
385
+ [2023-03-26 18:02:32,428][28731] EvtLoop [rollout_proc7_evt_loop, process=rollout_proc7] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance7'), args=(1, 0)
386
+ Traceback (most recent call last):
387
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
388
+ slot_callable(*args)
389
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
390
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
391
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
392
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
393
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
394
+ return self.env.step(action)
395
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
396
+ obs, rew, terminated, truncated, info = self.env.step(action)
397
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
398
+ obs, rew, terminated, truncated, info = self.env.step(action)
399
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
400
+ observation, reward, terminated, truncated, info = self.env.step(action)
401
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 384, in step
402
+ observation, reward, terminated, truncated, info = self.env.step(action)
403
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 88, in step
404
+ obs, reward, terminated, truncated, info = self.env.step(action)
405
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
406
+ return self.env.step(action)
407
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
408
+ obs, reward, terminated, truncated, info = self.env.step(action)
409
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
410
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
411
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
412
+ [2023-03-26 18:02:32,429][28731] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc7_evt_loop
413
+ [2023-03-26 18:02:32,428][28730] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance6'), args=(1, 0)
414
+ Traceback (most recent call last):
415
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
416
+ slot_callable(*args)
417
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
418
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
419
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
420
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
421
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
422
+ return self.env.step(action)
423
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
424
+ obs, rew, terminated, truncated, info = self.env.step(action)
425
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
426
+ obs, rew, terminated, truncated, info = self.env.step(action)
427
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
428
+ observation, reward, terminated, truncated, info = self.env.step(action)
429
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 384, in step
430
+ observation, reward, terminated, truncated, info = self.env.step(action)
431
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 88, in step
432
+ obs, reward, terminated, truncated, info = self.env.step(action)
433
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
434
+ return self.env.step(action)
435
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
436
+ obs, reward, terminated, truncated, info = self.env.step(action)
437
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
438
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
439
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
440
+ [2023-03-26 18:02:32,429][28730] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc6_evt_loop
441
+ [2023-03-26 18:02:32,431][28680] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 28680], exiting...
442
+ [2023-03-26 18:02:32,431][28680] Runner profile tree view:
443
+ main_loop: 27.3507
444
+ [2023-03-26 18:02:32,431][28680] Collected {0: 294912}, FPS: 10782.6
445
+ [2023-03-26 18:02:32,432][28695] Stopping Batcher_0...
446
+ [2023-03-26 18:02:32,432][28695] Loop batcher_evt_loop terminating...
447
+ [2023-03-26 18:02:32,433][28695] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth...
448
+ [2023-03-26 18:02:32,484][28695] Stopping LearnerWorker_p0...
449
+ [2023-03-26 18:02:32,484][28695] Loop learner_proc0_evt_loop terminating...
450
+ [2023-03-26 18:02:32,492][28710] Weights refcount: 2 0
451
+ [2023-03-26 18:02:32,493][28710] Stopping InferenceWorker_p0-w0...
452
+ [2023-03-26 18:02:32,493][28710] Loop inference_proc0-0_evt_loop terminating...
453
+ [2023-03-26 18:03:26,534][29286] Saving configuration to /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/config.json...
454
+ [2023-03-26 18:03:26,534][29286] Rollout worker 0 uses device cpu
455
+ [2023-03-26 18:03:26,534][29286] Rollout worker 1 uses device cpu
456
+ [2023-03-26 18:03:26,535][29286] Rollout worker 2 uses device cpu
457
+ [2023-03-26 18:03:26,535][29286] Rollout worker 3 uses device cpu
458
+ [2023-03-26 18:03:26,535][29286] Rollout worker 4 uses device cpu
459
+ [2023-03-26 18:03:26,535][29286] Rollout worker 5 uses device cpu
460
+ [2023-03-26 18:03:26,535][29286] Rollout worker 6 uses device cpu
461
+ [2023-03-26 18:03:26,535][29286] Rollout worker 7 uses device cpu
462
+ [2023-03-26 18:03:26,568][29286] Using GPUs [0] for process 0 (actually maps to GPUs [0])
463
+ [2023-03-26 18:03:26,568][29286] InferenceWorker_p0-w0: min num requests: 2
464
+ [2023-03-26 18:03:26,585][29286] Starting all processes...
465
+ [2023-03-26 18:03:26,585][29286] Starting process learner_proc0
466
+ [2023-03-26 18:03:27,728][29286] Starting all processes...
467
+ [2023-03-26 18:03:27,731][29300] Using GPUs [0] for process 0 (actually maps to GPUs [0])
468
+ [2023-03-26 18:03:27,731][29300] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
469
+ [2023-03-26 18:03:27,731][29286] Starting process inference_proc0-0
470
+ [2023-03-26 18:03:27,731][29286] Starting process rollout_proc0
471
+ [2023-03-26 18:03:27,731][29286] Starting process rollout_proc1
472
+ [2023-03-26 18:03:27,731][29286] Starting process rollout_proc2
473
+ [2023-03-26 18:03:27,731][29286] Starting process rollout_proc3
474
+ [2023-03-26 18:03:27,735][29286] Starting process rollout_proc4
475
+ [2023-03-26 18:03:27,738][29300] Num visible devices: 1
476
+ [2023-03-26 18:03:27,735][29286] Starting process rollout_proc5
477
+ [2023-03-26 18:03:27,736][29286] Starting process rollout_proc6
478
+ [2023-03-26 18:03:27,738][29286] Starting process rollout_proc7
479
+ [2023-03-26 18:03:27,756][29300] Starting seed is not provided
480
+ [2023-03-26 18:03:27,756][29300] Using GPUs [0] for process 0 (actually maps to GPUs [0])
481
+ [2023-03-26 18:03:27,756][29300] Initializing actor-critic model on device cuda:0
482
+ [2023-03-26 18:03:27,757][29300] RunningMeanStd input shape: (3, 72, 128)
483
+ [2023-03-26 18:03:27,757][29300] RunningMeanStd input shape: (1,)
484
+ [2023-03-26 18:03:27,767][29300] ConvEncoder: input_channels=3
485
+ [2023-03-26 18:03:27,871][29300] Conv encoder output size: 512
486
+ [2023-03-26 18:03:27,871][29300] Policy head output size: 512
487
+ [2023-03-26 18:03:27,886][29300] Created Actor Critic model with architecture:
488
+ [2023-03-26 18:03:27,886][29300] ActorCriticSharedWeights(
489
+ (obs_normalizer): ObservationNormalizer(
490
+ (running_mean_std): RunningMeanStdDictInPlace(
491
+ (running_mean_std): ModuleDict(
492
+ (obs): RunningMeanStdInPlace()
493
+ )
494
+ )
495
+ )
496
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
497
+ (encoder): VizdoomEncoder(
498
+ (basic_encoder): ConvEncoder(
499
+ (enc): RecursiveScriptModule(
500
+ original_name=ConvEncoderImpl
501
+ (conv_head): RecursiveScriptModule(
502
+ original_name=Sequential
503
+ (0): RecursiveScriptModule(original_name=Conv2d)
504
+ (1): RecursiveScriptModule(original_name=ELU)
505
+ (2): RecursiveScriptModule(original_name=Conv2d)
506
+ (3): RecursiveScriptModule(original_name=ELU)
507
+ (4): RecursiveScriptModule(original_name=Conv2d)
508
+ (5): RecursiveScriptModule(original_name=ELU)
509
+ )
510
+ (mlp_layers): RecursiveScriptModule(
511
+ original_name=Sequential
512
+ (0): RecursiveScriptModule(original_name=Linear)
513
+ (1): RecursiveScriptModule(original_name=ELU)
514
+ )
515
+ )
516
+ )
517
+ )
518
+ (core): ModelCoreRNN(
519
+ (core): GRU(512, 512)
520
+ )
521
+ (decoder): MlpDecoder(
522
+ (mlp): Identity()
523
+ )
524
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
525
+ (action_parameterization): ActionParameterizationDefault(
526
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
527
+ )
528
+ )
529
+ [2023-03-26 18:03:29,126][29340] Worker 7 uses CPU cores [14, 15]
530
+ [2023-03-26 18:03:29,132][29342] Worker 5 uses CPU cores [10, 11]
531
+ [2023-03-26 18:03:29,221][29321] Using GPUs [0] for process 0 (actually maps to GPUs [0])
532
+ [2023-03-26 18:03:29,221][29321] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
533
+ [2023-03-26 18:03:29,231][29321] Num visible devices: 1
534
+ [2023-03-26 18:03:29,303][29339] Worker 3 uses CPU cores [6, 7]
535
+ [2023-03-26 18:03:29,342][29322] Worker 2 uses CPU cores [4, 5]
536
+ [2023-03-26 18:03:29,389][29323] Worker 1 uses CPU cores [2, 3]
537
+ [2023-03-26 18:03:29,453][29320] Worker 0 uses CPU cores [0, 1]
538
+ [2023-03-26 18:03:29,521][29344] Worker 6 uses CPU cores [12, 13]
539
+ [2023-03-26 18:03:29,562][29343] Worker 4 uses CPU cores [8, 9]
540
+ [2023-03-26 18:03:29,611][29300] Using optimizer <class 'torch.optim.adam.Adam'>
541
+ [2023-03-26 18:03:29,611][29300] Loading state from checkpoint /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth...
542
+ [2023-03-26 18:03:29,643][29300] Loading model from checkpoint
543
+ [2023-03-26 18:03:29,645][29300] Loaded experiment state at self.train_step=72, self.env_steps=294912
544
+ [2023-03-26 18:03:29,645][29300] Initialized policy 0 weights for model version 72
545
+ [2023-03-26 18:03:29,647][29300] LearnerWorker_p0 finished initialization!
546
+ [2023-03-26 18:03:29,647][29300] Using GPUs [0] for process 0 (actually maps to GPUs [0])
547
+ [2023-03-26 18:03:29,739][29321] RunningMeanStd input shape: (3, 72, 128)
548
+ [2023-03-26 18:03:29,740][29321] RunningMeanStd input shape: (1,)
549
+ [2023-03-26 18:03:29,748][29321] ConvEncoder: input_channels=3
550
+ [2023-03-26 18:03:29,816][29321] Conv encoder output size: 512
551
+ [2023-03-26 18:03:29,817][29321] Policy head output size: 512
552
+ [2023-03-26 18:03:30,414][29286] Inference worker 0-0 is ready!
553
+ [2023-03-26 18:03:30,415][29286] All inference workers are ready! Signal rollout workers to start!
554
+ [2023-03-26 18:03:30,421][29320] Doom resolution: 160x120, resize resolution: (128, 72)
555
+ [2023-03-26 18:03:30,421][29342] Doom resolution: 160x120, resize resolution: (128, 72)
556
+ [2023-03-26 18:03:30,422][29323] Doom resolution: 160x120, resize resolution: (128, 72)
557
+ [2023-03-26 18:03:30,422][29344] Doom resolution: 160x120, resize resolution: (128, 72)
558
+ [2023-03-26 18:03:30,422][29339] Doom resolution: 160x120, resize resolution: (128, 72)
559
+ [2023-03-26 18:03:30,423][29343] Doom resolution: 160x120, resize resolution: (128, 72)
560
+ [2023-03-26 18:03:30,424][29340] Doom resolution: 160x120, resize resolution: (128, 72)
561
+ [2023-03-26 18:03:30,424][29322] Doom resolution: 160x120, resize resolution: (128, 72)
562
+ [2023-03-26 18:03:30,616][29340] EvtLoop [rollout_proc7_evt_loop, process=rollout_proc7] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
563
+ Traceback (most recent call last):
564
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
565
+ slot_callable(*args)
566
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
567
+ env_runner.init(self.timing)
568
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
569
+ self._reset()
570
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
571
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
572
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
573
+ return self.env.reset(**kwargs)
574
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
575
+ obs, info = self.env.reset(**kwargs)
576
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
577
+ obs, info = self.env.reset(**kwargs)
578
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
579
+ return self.env.reset(**kwargs)
580
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
581
+ return self.observation(self.env.reset(**kwargs))
582
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
583
+ observation = self._transpose(observation)
584
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
585
+ return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
586
+ File "<__array_function__ internals>", line 180, in transpose
587
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
588
+ return _wrapfunc(a, 'transpose', axes)
589
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
590
+ return _wrapit(obj, method, *args, **kwds)
591
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
592
+ result = getattr(asarray(obj), method)(*args, **kwds)
593
+ ValueError: axes don't match array
594
+ [2023-03-26 18:03:30,617][29340] Unhandled exception axes don't match array in evt loop rollout_proc7_evt_loop
595
+ [2023-03-26 18:03:30,617][29344] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
596
+ Traceback (most recent call last):
597
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
598
+ slot_callable(*args)
599
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
600
+ env_runner.init(self.timing)
601
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
602
+ self._reset()
603
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
604
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
605
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
606
+ return self.env.reset(**kwargs)
607
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
608
+ obs, info = self.env.reset(**kwargs)
609
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
610
+ obs, info = self.env.reset(**kwargs)
611
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
612
+ return self.env.reset(**kwargs)
613
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
614
+ return self.observation(self.env.reset(**kwargs))
615
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
616
+ observation = self._transpose(observation)
617
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
618
+ return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
619
+ File "<__array_function__ internals>", line 180, in transpose
620
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
621
+ return _wrapfunc(a, 'transpose', axes)
622
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
623
+ return _wrapit(obj, method, *args, **kwds)
624
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
625
+ result = getattr(asarray(obj), method)(*args, **kwds)
626
+ ValueError: axes don't match array
627
+ [2023-03-26 18:03:30,618][29344] Unhandled exception axes don't match array in evt loop rollout_proc6_evt_loop
628
+ [2023-03-26 18:03:30,620][29320] EvtLoop [rollout_proc0_evt_loop, process=rollout_proc0] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
629
+ Traceback (most recent call last):
630
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
631
+ slot_callable(*args)
632
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
633
+ env_runner.init(self.timing)
634
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
635
+ self._reset()
636
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
637
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
638
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
639
+ return self.env.reset(**kwargs)
640
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
641
+ obs, info = self.env.reset(**kwargs)
642
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
643
+ obs, info = self.env.reset(**kwargs)
644
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
645
+ return self.env.reset(**kwargs)
646
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
647
+ return self.observation(self.env.reset(**kwargs))
648
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
649
+ observation = self._transpose(observation)
650
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
651
+ return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
652
+ File "<__array_function__ internals>", line 180, in transpose
653
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
654
+ return _wrapfunc(a, 'transpose', axes)
655
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
656
+ return _wrapit(obj, method, *args, **kwds)
657
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
658
+ result = getattr(asarray(obj), method)(*args, **kwds)
659
+ ValueError: axes don't match array
660
+ [2023-03-26 18:03:30,621][29320] Unhandled exception axes don't match array in evt loop rollout_proc0_evt_loop
661
+ [2023-03-26 18:03:30,625][29343] EvtLoop [rollout_proc4_evt_loop, process=rollout_proc4] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
662
+ Traceback (most recent call last):
663
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
664
+ slot_callable(*args)
665
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
666
+ env_runner.init(self.timing)
667
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
668
+ self._reset()
669
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
670
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
671
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
672
+ return self.env.reset(**kwargs)
673
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
674
+ obs, info = self.env.reset(**kwargs)
675
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
676
+ obs, info = self.env.reset(**kwargs)
677
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
678
+ return self.env.reset(**kwargs)
679
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
680
+ return self.observation(self.env.reset(**kwargs))
681
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
682
+ observation = self._transpose(observation)
683
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
684
+ return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
685
+ File "<__array_function__ internals>", line 180, in transpose
686
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
687
+ return _wrapfunc(a, 'transpose', axes)
688
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
689
+ return _wrapit(obj, method, *args, **kwds)
690
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
691
+ result = getattr(asarray(obj), method)(*args, **kwds)
692
+ ValueError: axes don't match array
693
+ [2023-03-26 18:03:30,626][29343] Unhandled exception axes don't match array in evt loop rollout_proc4_evt_loop
694
+ [2023-03-26 18:03:30,823][29342] EvtLoop [rollout_proc5_evt_loop, process=rollout_proc5] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
695
+ Traceback (most recent call last):
696
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
697
+ slot_callable(*args)
698
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
699
+ env_runner.init(self.timing)
700
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
701
+ self._reset()
702
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
703
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
704
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
705
+ return self.env.reset(**kwargs)
706
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
707
+ obs, info = self.env.reset(**kwargs)
708
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
709
+ obs, info = self.env.reset(**kwargs)
710
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
711
+ return self.env.reset(**kwargs)
712
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
713
+ return self.observation(self.env.reset(**kwargs))
714
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
715
+ observation = self._transpose(observation)
716
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
717
+ return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
718
+ File "<__array_function__ internals>", line 180, in transpose
719
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
720
+ return _wrapfunc(a, 'transpose', axes)
721
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
722
+ return _wrapit(obj, method, *args, **kwds)
723
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
724
+ result = getattr(asarray(obj), method)(*args, **kwds)
725
+ ValueError: axes don't match array
726
+ [2023-03-26 18:03:30,825][29342] Unhandled exception axes don't match array in evt loop rollout_proc5_evt_loop
727
+ [2023-03-26 18:03:30,901][29339] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
728
+ Traceback (most recent call last):
729
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
730
+ slot_callable(*args)
731
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
732
+ env_runner.init(self.timing)
733
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
734
+ self._reset()
735
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
736
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
737
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
738
+ return self.env.reset(**kwargs)
739
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
740
+ obs, info = self.env.reset(**kwargs)
741
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
742
+ obs, info = self.env.reset(**kwargs)
743
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
744
+ return self.env.reset(**kwargs)
745
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
746
+ return self.observation(self.env.reset(**kwargs))
747
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
748
+ observation = self._transpose(observation)
749
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
750
+ return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
751
+ File "<__array_function__ internals>", line 180, in transpose
752
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
753
+ return _wrapfunc(a, 'transpose', axes)
754
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
755
+ return _wrapit(obj, method, *args, **kwds)
756
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
757
+ result = getattr(asarray(obj), method)(*args, **kwds)
758
+ ValueError: axes don't match array
759
+ [2023-03-26 18:03:30,902][29339] Unhandled exception axes don't match array in evt loop rollout_proc3_evt_loop
760
+ [2023-03-26 18:03:31,024][29323] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
761
+ Traceback (most recent call last):
762
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
763
+ slot_callable(*args)
764
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
765
+ env_runner.init(self.timing)
766
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
767
+ self._reset()
768
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
769
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
770
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
771
+ return self.env.reset(**kwargs)
772
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
773
+ obs, info = self.env.reset(**kwargs)
774
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
775
+ obs, info = self.env.reset(**kwargs)
776
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
777
+ return self.env.reset(**kwargs)
778
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
779
+ return self.observation(self.env.reset(**kwargs))
780
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
781
+ observation = self._transpose(observation)
782
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
783
+ return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
784
+ File "<__array_function__ internals>", line 180, in transpose
785
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
786
+ return _wrapfunc(a, 'transpose', axes)
787
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
788
+ return _wrapit(obj, method, *args, **kwds)
789
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
790
+ result = getattr(asarray(obj), method)(*args, **kwds)
791
+ ValueError: axes don't match array
792
+ [2023-03-26 18:03:31,025][29323] Unhandled exception axes don't match array in evt loop rollout_proc1_evt_loop
793
+ [2023-03-26 18:03:31,123][29322] EvtLoop [rollout_proc2_evt_loop, process=rollout_proc2] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
794
+ Traceback (most recent call last):
795
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
796
+ slot_callable(*args)
797
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
798
+ env_runner.init(self.timing)
799
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
800
+ self._reset()
801
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
802
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
803
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
804
+ return self.env.reset(**kwargs)
805
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
806
+ obs, info = self.env.reset(**kwargs)
807
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
808
+ obs, info = self.env.reset(**kwargs)
809
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
810
+ return self.env.reset(**kwargs)
811
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
812
+ return self.observation(self.env.reset(**kwargs))
813
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
814
+ observation = self._transpose(observation)
815
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
816
+ return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
817
+ File "<__array_function__ internals>", line 180, in transpose
818
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
819
+ return _wrapfunc(a, 'transpose', axes)
820
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
821
+ return _wrapit(obj, method, *args, **kwds)
822
+ File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
823
+ result = getattr(asarray(obj), method)(*args, **kwds)
824
+ ValueError: axes don't match array
825
+ [2023-03-26 18:03:31,124][29322] Unhandled exception axes don't match array in evt loop rollout_proc2_evt_loop
826
+ [2023-03-26 18:03:34,329][29286] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 294912. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
827
+ [2023-03-26 18:03:34,985][29286] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 29286], exiting...
828
+ [2023-03-26 18:03:34,986][29286] Runner profile tree view:
829
+ main_loop: 8.4004
830
+ [2023-03-26 18:03:34,986][29286] Collected {0: 294912}, FPS: 0.0
831
+ [2023-03-26 18:03:34,986][29300] Stopping Batcher_0...
832
+ [2023-03-26 18:03:34,986][29300] Loop batcher_evt_loop terminating...
833
+ [2023-03-26 18:03:34,987][29300] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth...
834
+ [2023-03-26 18:03:35,045][29321] Weights refcount: 2 0
835
+ [2023-03-26 18:03:35,046][29321] Stopping InferenceWorker_p0-w0...
836
+ [2023-03-26 18:03:35,046][29321] Loop inference_proc0-0_evt_loop terminating...
837
+ [2023-03-26 18:03:35,138][29300] Stopping LearnerWorker_p0...
838
+ [2023-03-26 18:03:35,138][29300] Loop learner_proc0_evt_loop terminating...
839
+ [2023-03-26 18:05:17,326][29927] Saving configuration to /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/config.json...
840
+ [2023-03-26 18:05:17,326][29927] Rollout worker 0 uses device cpu
841
+ [2023-03-26 18:05:17,326][29927] Rollout worker 1 uses device cpu
842
+ [2023-03-26 18:05:17,326][29927] Rollout worker 2 uses device cpu
843
+ [2023-03-26 18:05:17,326][29927] Rollout worker 3 uses device cpu
844
+ [2023-03-26 18:05:17,326][29927] Rollout worker 4 uses device cpu
845
+ [2023-03-26 18:05:17,326][29927] Rollout worker 5 uses device cpu
846
+ [2023-03-26 18:05:17,327][29927] Rollout worker 6 uses device cpu
847
+ [2023-03-26 18:05:17,327][29927] Rollout worker 7 uses device cpu
848
+ [2023-03-26 18:05:17,358][29927] Using GPUs [0] for process 0 (actually maps to GPUs [0])
849
+ [2023-03-26 18:05:17,358][29927] InferenceWorker_p0-w0: min num requests: 2
850
+ [2023-03-26 18:05:17,373][29927] Starting all processes...
851
+ [2023-03-26 18:05:17,373][29927] Starting process learner_proc0
852
+ [2023-03-26 18:05:18,342][29927] Starting all processes...
853
+ [2023-03-26 18:05:18,345][29977] Using GPUs [0] for process 0 (actually maps to GPUs [0])
854
+ [2023-03-26 18:05:18,345][29977] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
855
+ [2023-03-26 18:05:18,347][29927] Starting process inference_proc0-0
856
+ [2023-03-26 18:05:18,347][29927] Starting process rollout_proc0
857
+ [2023-03-26 18:05:18,347][29927] Starting process rollout_proc1
858
+ [2023-03-26 18:05:18,348][29927] Starting process rollout_proc2
859
+ [2023-03-26 18:05:18,353][29977] Num visible devices: 1
860
+ [2023-03-26 18:05:18,348][29927] Starting process rollout_proc3
861
+ [2023-03-26 18:05:18,350][29927] Starting process rollout_proc4
862
+ [2023-03-26 18:05:18,352][29927] Starting process rollout_proc5
863
+ [2023-03-26 18:05:18,367][29977] Starting seed is not provided
864
+ [2023-03-26 18:05:18,368][29977] Using GPUs [0] for process 0 (actually maps to GPUs [0])
865
+ [2023-03-26 18:05:18,368][29977] Initializing actor-critic model on device cuda:0
866
+ [2023-03-26 18:05:18,368][29977] RunningMeanStd input shape: (3, 72, 128)
867
+ [2023-03-26 18:05:18,368][29977] RunningMeanStd input shape: (1,)
868
+ [2023-03-26 18:05:18,364][29927] Starting process rollout_proc6
869
+ [2023-03-26 18:05:18,364][29927] Starting process rollout_proc7
870
+ [2023-03-26 18:05:18,376][29977] ConvEncoder: input_channels=3
871
+ [2023-03-26 18:05:18,460][29977] Conv encoder output size: 512
872
+ [2023-03-26 18:05:18,460][29977] Policy head output size: 512
873
+ [2023-03-26 18:05:18,469][29977] Created Actor Critic model with architecture:
874
+ [2023-03-26 18:05:18,469][29977] ActorCriticSharedWeights(
875
+ (obs_normalizer): ObservationNormalizer(
876
+ (running_mean_std): RunningMeanStdDictInPlace(
877
+ (running_mean_std): ModuleDict(
878
+ (obs): RunningMeanStdInPlace()
879
+ )
880
+ )
881
+ )
882
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
883
+ (encoder): VizdoomEncoder(
884
+ (basic_encoder): ConvEncoder(
885
+ (enc): RecursiveScriptModule(
886
+ original_name=ConvEncoderImpl
887
+ (conv_head): RecursiveScriptModule(
888
+ original_name=Sequential
889
+ (0): RecursiveScriptModule(original_name=Conv2d)
890
+ (1): RecursiveScriptModule(original_name=ELU)
891
+ (2): RecursiveScriptModule(original_name=Conv2d)
892
+ (3): RecursiveScriptModule(original_name=ELU)
893
+ (4): RecursiveScriptModule(original_name=Conv2d)
894
+ (5): RecursiveScriptModule(original_name=ELU)
895
+ )
896
+ (mlp_layers): RecursiveScriptModule(
897
+ original_name=Sequential
898
+ (0): RecursiveScriptModule(original_name=Linear)
899
+ (1): RecursiveScriptModule(original_name=ELU)
900
+ )
901
+ )
902
+ )
903
+ )
904
+ (core): ModelCoreRNN(
905
+ (core): GRU(512, 512)
906
+ )
907
+ (decoder): MlpDecoder(
908
+ (mlp): Identity()
909
+ )
910
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
911
+ (action_parameterization): ActionParameterizationDefault(
912
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
913
+ )
914
+ )
915
+ [2023-03-26 18:05:19,651][30009] Worker 3 uses CPU cores [6, 7]
916
+ [2023-03-26 18:05:19,661][29990] Worker 0 uses CPU cores [0, 1]
917
+ [2023-03-26 18:05:19,770][30011] Worker 5 uses CPU cores [10, 11]
918
+ [2023-03-26 18:05:19,770][30013] Worker 6 uses CPU cores [12, 13]
919
+ [2023-03-26 18:05:19,805][29992] Using GPUs [0] for process 0 (actually maps to GPUs [0])
920
+ [2023-03-26 18:05:19,805][29992] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
921
+ [2023-03-26 18:05:19,822][29992] Num visible devices: 1
922
+ [2023-03-26 18:05:19,846][29977] Using optimizer <class 'torch.optim.adam.Adam'>
923
+ [2023-03-26 18:05:19,847][29977] Loading state from checkpoint /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth...
924
+ [2023-03-26 18:05:19,864][30014] Worker 7 uses CPU cores [14, 15]
925
+ [2023-03-26 18:05:19,885][30012] Worker 4 uses CPU cores [8, 9]
926
+ [2023-03-26 18:05:19,889][30008] Worker 2 uses CPU cores [4, 5]
927
+ [2023-03-26 18:05:19,894][29991] Worker 1 uses CPU cores [2, 3]
928
+ [2023-03-26 18:05:20,046][29977] Loading model from checkpoint
929
+ [2023-03-26 18:05:20,056][29977] Loaded experiment state at self.train_step=72, self.env_steps=294912
930
+ [2023-03-26 18:05:20,068][29977] Initialized policy 0 weights for model version 72
931
+ [2023-03-26 18:05:20,135][29977] LearnerWorker_p0 finished initialization!
932
+ [2023-03-26 18:05:20,135][29977] Using GPUs [0] for process 0 (actually maps to GPUs [0])
933
+ [2023-03-26 18:05:20,313][29992] RunningMeanStd input shape: (3, 72, 128)
934
+ [2023-03-26 18:05:20,314][29992] RunningMeanStd input shape: (1,)
935
+ [2023-03-26 18:05:20,330][29992] ConvEncoder: input_channels=3
936
+ [2023-03-26 18:05:20,342][29927] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 294912. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
937
+ [2023-03-26 18:05:20,630][29992] Conv encoder output size: 512
938
+ [2023-03-26 18:05:20,630][29992] Policy head output size: 512
939
+ [2023-03-26 18:05:21,515][29927] Inference worker 0-0 is ready!
940
+ [2023-03-26 18:05:21,515][29927] All inference workers are ready! Signal rollout workers to start!
941
+ [2023-03-26 18:05:21,548][30008] Doom resolution: 160x120, resize resolution: (128, 72)
942
+ [2023-03-26 18:05:21,549][30011] Doom resolution: 160x120, resize resolution: (128, 72)
943
+ [2023-03-26 18:05:21,552][30014] Doom resolution: 160x120, resize resolution: (128, 72)
944
+ [2023-03-26 18:05:21,552][30013] Doom resolution: 160x120, resize resolution: (128, 72)
945
+ [2023-03-26 18:05:21,553][29991] Doom resolution: 160x120, resize resolution: (128, 72)
946
+ [2023-03-26 18:05:21,553][30012] Doom resolution: 160x120, resize resolution: (128, 72)
947
+ [2023-03-26 18:05:21,553][29990] Doom resolution: 160x120, resize resolution: (128, 72)
948
+ [2023-03-26 18:05:21,571][30009] Doom resolution: 160x120, resize resolution: (128, 72)
949
+ [2023-03-26 18:05:21,909][30008] Decorrelating experience for 0 frames...
950
+ [2023-03-26 18:05:21,909][29990] Decorrelating experience for 0 frames...
951
+ [2023-03-26 18:05:21,909][30012] Decorrelating experience for 0 frames...
952
+ [2023-03-26 18:05:21,918][29991] Decorrelating experience for 0 frames...
953
+ [2023-03-26 18:05:21,918][30011] Decorrelating experience for 0 frames...
954
+ [2023-03-26 18:05:22,080][30008] Decorrelating experience for 32 frames...
955
+ [2023-03-26 18:05:22,106][30009] Decorrelating experience for 0 frames...
956
+ [2023-03-26 18:05:22,107][29990] Decorrelating experience for 32 frames...
957
+ [2023-03-26 18:05:22,107][30011] Decorrelating experience for 32 frames...
958
+ [2023-03-26 18:05:22,108][30012] Decorrelating experience for 32 frames...
959
+ [2023-03-26 18:05:22,107][30014] Decorrelating experience for 0 frames...
960
+ [2023-03-26 18:05:22,297][30014] Decorrelating experience for 32 frames...
961
+ [2023-03-26 18:05:22,297][30009] Decorrelating experience for 32 frames...
962
+ [2023-03-26 18:05:22,306][30008] Decorrelating experience for 64 frames...
963
+ [2023-03-26 18:05:22,317][30013] Decorrelating experience for 0 frames...
964
+ [2023-03-26 18:05:22,319][30011] Decorrelating experience for 64 frames...
965
+ [2023-03-26 18:05:22,492][30013] Decorrelating experience for 32 frames...
966
+ [2023-03-26 18:05:22,493][30009] Decorrelating experience for 64 frames...
967
+ [2023-03-26 18:05:22,504][30008] Decorrelating experience for 96 frames...
968
+ [2023-03-26 18:05:22,531][29990] Decorrelating experience for 64 frames...
969
+ [2023-03-26 18:05:22,532][30012] Decorrelating experience for 64 frames...
970
+ [2023-03-26 18:05:22,674][30011] Decorrelating experience for 96 frames...
971
+ [2023-03-26 18:05:22,690][30013] Decorrelating experience for 64 frames...
972
+ [2023-03-26 18:05:22,729][29990] Decorrelating experience for 96 frames...
973
+ [2023-03-26 18:05:22,860][30014] Decorrelating experience for 64 frames...
974
+ [2023-03-26 18:05:22,882][30013] Decorrelating experience for 96 frames...
975
+ [2023-03-26 18:05:22,903][30009] Decorrelating experience for 96 frames...
976
+ [2023-03-26 18:05:22,935][30012] Decorrelating experience for 96 frames...
977
+ [2023-03-26 18:05:23,047][29991] Decorrelating experience for 32 frames...
978
+ [2023-03-26 18:05:23,063][30014] Decorrelating experience for 96 frames...
979
+ [2023-03-26 18:05:23,254][29991] Decorrelating experience for 64 frames...
980
+ [2023-03-26 18:05:23,468][29991] Decorrelating experience for 96 frames...
981
+ [2023-03-26 18:05:23,740][29977] Signal inference workers to stop experience collection...
982
+ [2023-03-26 18:05:23,749][29992] InferenceWorker_p0-w0: stopping experience collection
983
+ [2023-03-26 18:05:24,787][29977] Signal inference workers to resume experience collection...
984
+ [2023-03-26 18:05:24,788][29992] InferenceWorker_p0-w0: resuming experience collection
985
+ [2023-03-26 18:05:25,342][29927] Fps is (10 sec: 819.2, 60 sec: 819.2, 300 sec: 819.2). Total num frames: 299008. Throughput: 0: 596.8. Samples: 2984. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
986
+ [2023-03-26 18:05:25,342][29927] Avg episode reward: [(0, '3.144')]
987
+ [2023-03-26 18:05:26,570][29992] Updated weights for policy 0, policy_version 82 (0.0258)
988
+ [2023-03-26 18:05:28,037][29992] Updated weights for policy 0, policy_version 92 (0.0006)
989
+ [2023-03-26 18:05:29,494][29992] Updated weights for policy 0, policy_version 102 (0.0006)
990
+ [2023-03-26 18:05:30,342][29927] Fps is (10 sec: 14336.2, 60 sec: 14336.2, 300 sec: 14336.2). Total num frames: 438272. Throughput: 0: 1778.6. Samples: 17786. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
991
+ [2023-03-26 18:05:30,342][29927] Avg episode reward: [(0, '4.552')]
992
+ [2023-03-26 18:05:30,353][29977] Saving new best policy, reward=4.552!
993
+ [2023-03-26 18:05:30,930][29992] Updated weights for policy 0, policy_version 112 (0.0006)
994
+ [2023-03-26 18:05:32,394][29992] Updated weights for policy 0, policy_version 122 (0.0006)
995
+ [2023-03-26 18:05:33,872][29992] Updated weights for policy 0, policy_version 132 (0.0006)
996
+ [2023-03-26 18:05:35,342][29927] Fps is (10 sec: 27852.7, 60 sec: 18841.7, 300 sec: 18841.7). Total num frames: 577536. Throughput: 0: 3982.2. Samples: 59732. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
997
+ [2023-03-26 18:05:35,342][29927] Avg episode reward: [(0, '4.635')]
998
+ [2023-03-26 18:05:35,345][29992] Updated weights for policy 0, policy_version 142 (0.0006)
999
+ [2023-03-26 18:05:35,345][29977] Saving new best policy, reward=4.635!
1000
+ [2023-03-26 18:05:36,830][29992] Updated weights for policy 0, policy_version 152 (0.0006)
1001
+ [2023-03-26 18:05:37,354][29927] Heartbeat connected on Batcher_0
1002
+ [2023-03-26 18:05:37,356][29927] Heartbeat connected on LearnerWorker_p0
1003
+ [2023-03-26 18:05:37,361][29927] Heartbeat connected on RolloutWorker_w0
1004
+ [2023-03-26 18:05:37,362][29927] Heartbeat connected on InferenceWorker_p0-w0
1005
+ [2023-03-26 18:05:37,365][29927] Heartbeat connected on RolloutWorker_w2
1006
+ [2023-03-26 18:05:37,366][29927] Heartbeat connected on RolloutWorker_w3
1007
+ [2023-03-26 18:05:37,368][29927] Heartbeat connected on RolloutWorker_w4
1008
+ [2023-03-26 18:05:37,368][29927] Heartbeat connected on RolloutWorker_w1
1009
+ [2023-03-26 18:05:37,369][29927] Heartbeat connected on RolloutWorker_w5
1010
+ [2023-03-26 18:05:37,371][29927] Heartbeat connected on RolloutWorker_w6
1011
+ [2023-03-26 18:05:37,373][29927] Heartbeat connected on RolloutWorker_w7
1012
+ [2023-03-26 18:05:38,366][29992] Updated weights for policy 0, policy_version 162 (0.0006)
1013
+ [2023-03-26 18:05:39,860][29992] Updated weights for policy 0, policy_version 172 (0.0006)
1014
+ [2023-03-26 18:05:40,342][29927] Fps is (10 sec: 27852.4, 60 sec: 21094.4, 300 sec: 21094.4). Total num frames: 716800. Throughput: 0: 5056.3. Samples: 101126. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1015
+ [2023-03-26 18:05:40,342][29927] Avg episode reward: [(0, '4.628')]
1016
+ [2023-03-26 18:05:41,310][29992] Updated weights for policy 0, policy_version 182 (0.0006)
1017
+ [2023-03-26 18:05:42,797][29992] Updated weights for policy 0, policy_version 192 (0.0006)
1018
+ [2023-03-26 18:05:44,410][29992] Updated weights for policy 0, policy_version 202 (0.0007)
1019
+ [2023-03-26 18:05:45,342][29927] Fps is (10 sec: 27443.1, 60 sec: 22282.3, 300 sec: 22282.3). Total num frames: 851968. Throughput: 0: 4876.9. Samples: 121922. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0)
1020
+ [2023-03-26 18:05:45,342][29927] Avg episode reward: [(0, '5.026')]
1021
+ [2023-03-26 18:05:45,345][29977] Saving new best policy, reward=5.026!
1022
+ [2023-03-26 18:05:45,902][29992] Updated weights for policy 0, policy_version 212 (0.0006)
1023
+ [2023-03-26 18:05:47,346][29992] Updated weights for policy 0, policy_version 222 (0.0006)
1024
+ [2023-03-26 18:05:48,815][29992] Updated weights for policy 0, policy_version 232 (0.0006)
1025
+ [2023-03-26 18:05:50,179][29992] Updated weights for policy 0, policy_version 242 (0.0006)
1026
+ [2023-03-26 18:05:50,342][29927] Fps is (10 sec: 27852.9, 60 sec: 23347.2, 300 sec: 23347.2). Total num frames: 995328. Throughput: 0: 5421.9. Samples: 162658. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1027
+ [2023-03-26 18:05:50,342][29927] Avg episode reward: [(0, '5.257')]
1028
+ [2023-03-26 18:05:50,344][29977] Saving new best policy, reward=5.257!
1029
+ [2023-03-26 18:05:51,614][29992] Updated weights for policy 0, policy_version 252 (0.0006)
1030
+ [2023-03-26 18:05:53,043][29992] Updated weights for policy 0, policy_version 262 (0.0006)
1031
+ [2023-03-26 18:05:54,518][29992] Updated weights for policy 0, policy_version 272 (0.0006)
1032
+ [2023-03-26 18:05:55,342][29927] Fps is (10 sec: 28262.4, 60 sec: 23990.9, 300 sec: 23990.9). Total num frames: 1134592. Throughput: 0: 5873.7. Samples: 205578. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1033
+ [2023-03-26 18:05:55,342][29927] Avg episode reward: [(0, '6.496')]
1034
+ [2023-03-26 18:05:55,391][29977] Saving new best policy, reward=6.496!
1035
+ [2023-03-26 18:05:55,972][29992] Updated weights for policy 0, policy_version 282 (0.0006)
1036
+ [2023-03-26 18:05:57,434][29992] Updated weights for policy 0, policy_version 292 (0.0006)
1037
+ [2023-03-26 18:05:58,854][29992] Updated weights for policy 0, policy_version 302 (0.0006)
1038
+ [2023-03-26 18:06:00,284][29992] Updated weights for policy 0, policy_version 312 (0.0006)
1039
+ [2023-03-26 18:06:00,342][29927] Fps is (10 sec: 28262.5, 60 sec: 24576.0, 300 sec: 24576.0). Total num frames: 1277952. Throughput: 0: 5669.3. Samples: 226772. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1040
+ [2023-03-26 18:06:00,342][29927] Avg episode reward: [(0, '7.329')]
1041
+ [2023-03-26 18:06:00,343][29977] Saving new best policy, reward=7.329!
1042
+ [2023-03-26 18:06:01,731][29992] Updated weights for policy 0, policy_version 322 (0.0006)
1043
+ [2023-03-26 18:06:03,207][29992] Updated weights for policy 0, policy_version 332 (0.0006)
1044
+ [2023-03-26 18:06:04,696][29992] Updated weights for policy 0, policy_version 342 (0.0006)
1045
+ [2023-03-26 18:06:05,342][29927] Fps is (10 sec: 28262.2, 60 sec: 24940.1, 300 sec: 24940.1). Total num frames: 1417216. Throughput: 0: 5982.7. Samples: 269220. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1046
+ [2023-03-26 18:06:05,342][29927] Avg episode reward: [(0, '7.245')]
1047
+ [2023-03-26 18:06:06,157][29992] Updated weights for policy 0, policy_version 352 (0.0006)
1048
+ [2023-03-26 18:06:07,584][29992] Updated weights for policy 0, policy_version 362 (0.0006)
1049
+ [2023-03-26 18:06:09,057][29992] Updated weights for policy 0, policy_version 372 (0.0006)
1050
+ [2023-03-26 18:06:10,342][29927] Fps is (10 sec: 27852.9, 60 sec: 25231.4, 300 sec: 25231.4). Total num frames: 1556480. Throughput: 0: 6848.3. Samples: 311156. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1051
+ [2023-03-26 18:06:10,342][29927] Avg episode reward: [(0, '9.407')]
1052
+ [2023-03-26 18:06:10,368][29977] Saving new best policy, reward=9.407!
1053
+ [2023-03-26 18:06:10,526][29992] Updated weights for policy 0, policy_version 382 (0.0006)
1054
+ [2023-03-26 18:06:12,002][29992] Updated weights for policy 0, policy_version 392 (0.0006)
1055
+ [2023-03-26 18:06:13,471][29992] Updated weights for policy 0, policy_version 402 (0.0006)
1056
+ [2023-03-26 18:06:14,920][29992] Updated weights for policy 0, policy_version 412 (0.0006)
1057
+ [2023-03-26 18:06:15,342][29927] Fps is (10 sec: 27852.9, 60 sec: 25469.7, 300 sec: 25469.7). Total num frames: 1695744. Throughput: 0: 6985.5. Samples: 332132. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1058
+ [2023-03-26 18:06:15,342][29927] Avg episode reward: [(0, '10.087')]
1059
+ [2023-03-26 18:06:15,350][29977] Saving new best policy, reward=10.087!
1060
+ [2023-03-26 18:06:16,436][29992] Updated weights for policy 0, policy_version 422 (0.0006)
1061
+ [2023-03-26 18:06:17,888][29992] Updated weights for policy 0, policy_version 432 (0.0006)
1062
+ [2023-03-26 18:06:19,344][29992] Updated weights for policy 0, policy_version 442 (0.0006)
1063
+ [2023-03-26 18:06:20,342][29927] Fps is (10 sec: 27852.6, 60 sec: 25668.3, 300 sec: 25668.3). Total num frames: 1835008. Throughput: 0: 6981.4. Samples: 373894. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1064
+ [2023-03-26 18:06:20,342][29927] Avg episode reward: [(0, '12.004')]
1065
+ [2023-03-26 18:06:20,364][29977] Saving new best policy, reward=12.004!
1066
+ [2023-03-26 18:06:20,796][29992] Updated weights for policy 0, policy_version 452 (0.0006)
1067
+ [2023-03-26 18:06:22,250][29992] Updated weights for policy 0, policy_version 462 (0.0006)
1068
+ [2023-03-26 18:06:23,734][29992] Updated weights for policy 0, policy_version 472 (0.0006)
1069
+ [2023-03-26 18:06:25,245][29992] Updated weights for policy 0, policy_version 482 (0.0006)
1070
+ [2023-03-26 18:06:25,342][29927] Fps is (10 sec: 27852.9, 60 sec: 27921.1, 300 sec: 25836.3). Total num frames: 1974272. Throughput: 0: 6991.6. Samples: 415748. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1071
+ [2023-03-26 18:06:25,342][29927] Avg episode reward: [(0, '17.983')]
1072
+ [2023-03-26 18:06:25,387][29977] Saving new best policy, reward=17.983!
1073
+ [2023-03-26 18:06:26,674][29992] Updated weights for policy 0, policy_version 492 (0.0006)
1074
+ [2023-03-26 18:06:28,130][29992] Updated weights for policy 0, policy_version 502 (0.0006)
1075
+ [2023-03-26 18:06:29,564][29992] Updated weights for policy 0, policy_version 512 (0.0006)
1076
+ [2023-03-26 18:06:30,342][29927] Fps is (10 sec: 28262.4, 60 sec: 27989.3, 300 sec: 26038.9). Total num frames: 2117632. Throughput: 0: 6999.7. Samples: 436910. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1077
+ [2023-03-26 18:06:30,342][29927] Avg episode reward: [(0, '17.345')]
1078
+ [2023-03-26 18:06:31,026][29992] Updated weights for policy 0, policy_version 522 (0.0006)
1079
+ [2023-03-26 18:06:32,483][29992] Updated weights for policy 0, policy_version 532 (0.0006)
1080
+ [2023-03-26 18:06:33,928][29992] Updated weights for policy 0, policy_version 542 (0.0006)
1081
+ [2023-03-26 18:06:35,342][29927] Fps is (10 sec: 28262.2, 60 sec: 27989.3, 300 sec: 26159.8). Total num frames: 2256896. Throughput: 0: 7034.1. Samples: 479192. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1082
+ [2023-03-26 18:06:35,342][29927] Avg episode reward: [(0, '18.067')]
1083
+ [2023-03-26 18:06:35,369][29977] Saving new best policy, reward=18.067!
1084
+ [2023-03-26 18:06:35,369][29992] Updated weights for policy 0, policy_version 552 (0.0006)
1085
+ [2023-03-26 18:06:36,824][29992] Updated weights for policy 0, policy_version 562 (0.0006)
1086
+ [2023-03-26 18:06:38,257][29992] Updated weights for policy 0, policy_version 572 (0.0006)
1087
+ [2023-03-26 18:06:39,735][29992] Updated weights for policy 0, policy_version 582 (0.0006)
1088
+ [2023-03-26 18:06:40,342][29927] Fps is (10 sec: 28262.5, 60 sec: 28057.6, 300 sec: 26316.8). Total num frames: 2400256. Throughput: 0: 7026.0. Samples: 521750. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1089
+ [2023-03-26 18:06:40,342][29927] Avg episode reward: [(0, '21.111')]
1090
+ [2023-03-26 18:06:40,344][29977] Saving new best policy, reward=21.111!
1091
+ [2023-03-26 18:06:41,195][29992] Updated weights for policy 0, policy_version 592 (0.0006)
1092
+ [2023-03-26 18:06:42,682][29992] Updated weights for policy 0, policy_version 602 (0.0006)
1093
+ [2023-03-26 18:06:44,139][29992] Updated weights for policy 0, policy_version 612 (0.0006)
1094
+ [2023-03-26 18:06:45,342][29927] Fps is (10 sec: 28262.6, 60 sec: 28125.9, 300 sec: 26407.2). Total num frames: 2539520. Throughput: 0: 7017.7. Samples: 542568. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1095
+ [2023-03-26 18:06:45,342][29927] Avg episode reward: [(0, '22.074')]
1096
+ [2023-03-26 18:06:45,344][29977] Saving new best policy, reward=22.074!
1097
+ [2023-03-26 18:06:45,578][29992] Updated weights for policy 0, policy_version 622 (0.0006)
1098
+ [2023-03-26 18:06:47,011][29992] Updated weights for policy 0, policy_version 632 (0.0006)
1099
+ [2023-03-26 18:06:48,491][29992] Updated weights for policy 0, policy_version 642 (0.0006)
1100
+ [2023-03-26 18:06:49,961][29992] Updated weights for policy 0, policy_version 652 (0.0006)
1101
+ [2023-03-26 18:06:50,342][29927] Fps is (10 sec: 27852.6, 60 sec: 28057.6, 300 sec: 26487.5). Total num frames: 2678784. Throughput: 0: 7011.5. Samples: 584738. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1102
+ [2023-03-26 18:06:50,342][29927] Avg episode reward: [(0, '21.318')]
1103
+ [2023-03-26 18:06:51,412][29992] Updated weights for policy 0, policy_version 662 (0.0006)
1104
+ [2023-03-26 18:06:52,851][29992] Updated weights for policy 0, policy_version 672 (0.0006)
1105
+ [2023-03-26 18:06:54,272][29992] Updated weights for policy 0, policy_version 682 (0.0006)
1106
+ [2023-03-26 18:06:55,342][29927] Fps is (10 sec: 28262.3, 60 sec: 28125.9, 300 sec: 26602.5). Total num frames: 2822144. Throughput: 0: 7026.6. Samples: 627352. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1107
+ [2023-03-26 18:06:55,342][29927] Avg episode reward: [(0, '23.056')]
1108
+ [2023-03-26 18:06:55,345][29977] Saving new best policy, reward=23.056!
1109
+ [2023-03-26 18:06:55,761][29992] Updated weights for policy 0, policy_version 692 (0.0006)
1110
+ [2023-03-26 18:06:57,242][29992] Updated weights for policy 0, policy_version 702 (0.0006)
1111
+ [2023-03-26 18:06:58,682][29992] Updated weights for policy 0, policy_version 712 (0.0006)
1112
+ [2023-03-26 18:07:00,106][29992] Updated weights for policy 0, policy_version 722 (0.0006)
1113
+ [2023-03-26 18:07:00,342][29927] Fps is (10 sec: 28262.5, 60 sec: 28057.6, 300 sec: 26665.0). Total num frames: 2961408. Throughput: 0: 7016.6. Samples: 647880. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1114
+ [2023-03-26 18:07:00,342][29927] Avg episode reward: [(0, '22.628')]
1115
+ [2023-03-26 18:07:01,599][29992] Updated weights for policy 0, policy_version 732 (0.0006)
1116
+ [2023-03-26 18:07:03,173][29992] Updated weights for policy 0, policy_version 742 (0.0007)
1117
+ [2023-03-26 18:07:04,669][29992] Updated weights for policy 0, policy_version 752 (0.0007)
1118
+ [2023-03-26 18:07:05,342][29927] Fps is (10 sec: 27443.3, 60 sec: 27989.4, 300 sec: 26682.5). Total num frames: 3096576. Throughput: 0: 7011.9. Samples: 689428. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1119
+ [2023-03-26 18:07:05,342][29927] Avg episode reward: [(0, '22.380')]
1120
+ [2023-03-26 18:07:06,135][29992] Updated weights for policy 0, policy_version 762 (0.0006)
1121
+ [2023-03-26 18:07:07,628][29992] Updated weights for policy 0, policy_version 772 (0.0006)
1122
+ [2023-03-26 18:07:09,148][29992] Updated weights for policy 0, policy_version 782 (0.0006)
1123
+ [2023-03-26 18:07:10,342][29927] Fps is (10 sec: 27443.4, 60 sec: 27989.3, 300 sec: 26735.7). Total num frames: 3235840. Throughput: 0: 6997.0. Samples: 730612. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1124
+ [2023-03-26 18:07:10,342][29927] Avg episode reward: [(0, '18.703')]
1125
+ [2023-03-26 18:07:10,595][29992] Updated weights for policy 0, policy_version 792 (0.0006)
1126
+ [2023-03-26 18:07:12,083][29992] Updated weights for policy 0, policy_version 802 (0.0007)
1127
+ [2023-03-26 18:07:13,550][29992] Updated weights for policy 0, policy_version 812 (0.0007)
1128
+ [2023-03-26 18:07:15,034][29992] Updated weights for policy 0, policy_version 822 (0.0006)
1129
+ [2023-03-26 18:07:15,342][29927] Fps is (10 sec: 27852.7, 60 sec: 27989.3, 300 sec: 26784.3). Total num frames: 3375104. Throughput: 0: 6987.0. Samples: 751324. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1130
+ [2023-03-26 18:07:15,342][29927] Avg episode reward: [(0, '24.707')]
1131
+ [2023-03-26 18:07:15,345][29977] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000824_3375104.pth...
1132
+ [2023-03-26 18:07:15,395][29977] Saving new best policy, reward=24.707!
1133
+ [2023-03-26 18:07:16,510][29992] Updated weights for policy 0, policy_version 832 (0.0006)
1134
+ [2023-03-26 18:07:17,986][29992] Updated weights for policy 0, policy_version 842 (0.0006)
1135
+ [2023-03-26 18:07:19,428][29992] Updated weights for policy 0, policy_version 852 (0.0006)
1136
+ [2023-03-26 18:07:20,342][29927] Fps is (10 sec: 27852.6, 60 sec: 27989.3, 300 sec: 26828.8). Total num frames: 3514368. Throughput: 0: 6976.8. Samples: 793150. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1137
+ [2023-03-26 18:07:20,342][29927] Avg episode reward: [(0, '22.921')]
1138
+ [2023-03-26 18:07:20,925][29992] Updated weights for policy 0, policy_version 862 (0.0006)
1139
+ [2023-03-26 18:07:22,390][29992] Updated weights for policy 0, policy_version 872 (0.0006)
1140
+ [2023-03-26 18:07:23,920][29992] Updated weights for policy 0, policy_version 882 (0.0007)
1141
+ [2023-03-26 18:07:25,342][29927] Fps is (10 sec: 27443.1, 60 sec: 27921.0, 300 sec: 26837.0). Total num frames: 3649536. Throughput: 0: 6945.6. Samples: 834302. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1142
+ [2023-03-26 18:07:25,342][29927] Avg episode reward: [(0, '23.368')]
1143
+ [2023-03-26 18:07:25,405][29992] Updated weights for policy 0, policy_version 892 (0.0006)
1144
+ [2023-03-26 18:07:26,893][29992] Updated weights for policy 0, policy_version 902 (0.0006)
1145
+ [2023-03-26 18:07:28,321][29992] Updated weights for policy 0, policy_version 912 (0.0006)
1146
+ [2023-03-26 18:07:29,734][29992] Updated weights for policy 0, policy_version 922 (0.0006)
1147
+ [2023-03-26 18:07:30,342][29927] Fps is (10 sec: 27853.0, 60 sec: 27921.1, 300 sec: 26907.6). Total num frames: 3792896. Throughput: 0: 6946.9. Samples: 855180. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1148
+ [2023-03-26 18:07:30,342][29927] Avg episode reward: [(0, '20.870')]
1149
+ [2023-03-26 18:07:31,194][29992] Updated weights for policy 0, policy_version 932 (0.0006)
1150
+ [2023-03-26 18:07:32,616][29992] Updated weights for policy 0, policy_version 942 (0.0006)
1151
+ [2023-03-26 18:07:34,048][29992] Updated weights for policy 0, policy_version 952 (0.0006)
1152
+ [2023-03-26 18:07:35,342][29927] Fps is (10 sec: 28262.5, 60 sec: 27921.1, 300 sec: 26942.6). Total num frames: 3932160. Throughput: 0: 6965.0. Samples: 898162. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1153
+ [2023-03-26 18:07:35,342][29927] Avg episode reward: [(0, '24.605')]
1154
+ [2023-03-26 18:07:35,504][29992] Updated weights for policy 0, policy_version 962 (0.0006)
1155
+ [2023-03-26 18:07:36,987][29992] Updated weights for policy 0, policy_version 972 (0.0006)
1156
+ [2023-03-26 18:07:37,877][29977] Stopping Batcher_0...
1157
+ [2023-03-26 18:07:37,877][29927] Component Batcher_0 stopped!
1158
+ [2023-03-26 18:07:37,877][29977] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
1159
+ [2023-03-26 18:07:37,877][29977] Loop batcher_evt_loop terminating...
1160
+ [2023-03-26 18:07:37,898][29992] Weights refcount: 2 0
1161
+ [2023-03-26 18:07:37,903][29992] Stopping InferenceWorker_p0-w0...
1162
+ [2023-03-26 18:07:37,903][29992] Loop inference_proc0-0_evt_loop terminating...
1163
+ [2023-03-26 18:07:37,903][29927] Component InferenceWorker_p0-w0 stopped!
1164
+ [2023-03-26 18:07:37,917][29977] Removing /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth
1165
+ [2023-03-26 18:07:37,918][29977] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
1166
+ [2023-03-26 18:07:37,930][29990] Stopping RolloutWorker_w0...
1167
+ [2023-03-26 18:07:37,930][30012] Stopping RolloutWorker_w4...
1168
+ [2023-03-26 18:07:37,930][29927] Component RolloutWorker_w0 stopped!
1169
+ [2023-03-26 18:07:37,930][29990] Loop rollout_proc0_evt_loop terminating...
1170
+ [2023-03-26 18:07:37,930][29927] Component RolloutWorker_w4 stopped!
1171
+ [2023-03-26 18:07:37,930][30012] Loop rollout_proc4_evt_loop terminating...
1172
+ [2023-03-26 18:07:37,930][30013] Stopping RolloutWorker_w6...
1173
+ [2023-03-26 18:07:37,931][29927] Component RolloutWorker_w6 stopped!
1174
+ [2023-03-26 18:07:37,931][30013] Loop rollout_proc6_evt_loop terminating...
1175
+ [2023-03-26 18:07:37,931][30014] Stopping RolloutWorker_w7...
1176
+ [2023-03-26 18:07:37,931][29927] Component RolloutWorker_w7 stopped!
1177
+ [2023-03-26 18:07:37,931][30014] Loop rollout_proc7_evt_loop terminating...
1178
+ [2023-03-26 18:07:37,931][29927] Component RolloutWorker_w1 stopped!
1179
+ [2023-03-26 18:07:37,931][29991] Stopping RolloutWorker_w1...
1180
+ [2023-03-26 18:07:37,931][29927] Component RolloutWorker_w3 stopped!
1181
+ [2023-03-26 18:07:37,931][29927] Component RolloutWorker_w2 stopped!
1182
+ [2023-03-26 18:07:37,931][30009] Stopping RolloutWorker_w3...
1183
+ [2023-03-26 18:07:37,931][29991] Loop rollout_proc1_evt_loop terminating...
1184
+ [2023-03-26 18:07:37,931][30008] Stopping RolloutWorker_w2...
1185
+ [2023-03-26 18:07:37,932][29927] Component RolloutWorker_w5 stopped!
1186
+ [2023-03-26 18:07:37,932][30009] Loop rollout_proc3_evt_loop terminating...
1187
+ [2023-03-26 18:07:37,932][30008] Loop rollout_proc2_evt_loop terminating...
1188
+ [2023-03-26 18:07:37,932][30011] Stopping RolloutWorker_w5...
1189
+ [2023-03-26 18:07:37,932][30011] Loop rollout_proc5_evt_loop terminating...
1190
+ [2023-03-26 18:07:38,071][29977] Stopping LearnerWorker_p0...
1191
+ [2023-03-26 18:07:38,071][29927] Component LearnerWorker_p0 stopped!
1192
+ [2023-03-26 18:07:38,071][29977] Loop learner_proc0_evt_loop terminating...
1193
+ [2023-03-26 18:07:38,071][29927] Waiting for process learner_proc0 to stop...
1194
+ [2023-03-26 18:07:38,782][29927] Waiting for process inference_proc0-0 to join...
1195
+ [2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc0 to join...
1196
+ [2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc1 to join...
1197
+ [2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc2 to join...
1198
+ [2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc3 to join...
1199
+ [2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc4 to join...
1200
+ [2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc5 to join...
1201
+ [2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc6 to join...
1202
+ [2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc7 to join...
1203
+ [2023-03-26 18:07:38,782][29927] Batcher 0 profile tree view:
1204
+ batching: 7.1332, releasing_batches: 0.0138
1205
+ [2023-03-26 18:07:38,782][29927] InferenceWorker_p0-w0 profile tree view:
1206
+ wait_policy: 0.0000
1207
+ wait_policy_total: 2.5493
1208
+ update_model: 2.0518
1209
+ weight_update: 0.0006
1210
+ one_step: 0.0010
1211
+ handle_policy_step: 124.2579
1212
+ deserialize: 5.1725, stack: 0.6572, obs_to_device_normalize: 34.1223, forward: 47.7467, send_messages: 6.9335
1213
+ prepare_outputs: 25.2262
1214
+ to_cpu: 19.2284
1215
+ [2023-03-26 18:07:38,782][29927] Learner 0 profile tree view:
1216
+ misc: 0.0033, prepare_batch: 10.1881
1217
+ train: 35.8925
1218
+ epoch_init: 0.0030, minibatch_init: 0.0047, losses_postprocess: 0.2331, kl_divergence: 0.2144, after_optimizer: 0.2908
1219
+ calculate_losses: 10.7378
1220
+ losses_init: 0.0019, forward_head: 0.6191, bptt_initial: 7.9405, tail: 0.3217, advantages_returns: 0.0921, losses: 0.9662
1221
+ bptt: 0.7048
1222
+ bptt_forward_core: 0.6812
1223
+ update: 24.1823
1224
+ clip: 0.6307
1225
+ [2023-03-26 18:07:38,783][29927] RolloutWorker_w0 profile tree view:
1226
+ wait_for_trajectories: 0.0830, enqueue_policy_requests: 4.4344, env_step: 69.2102, overhead: 4.7997, complete_rollouts: 0.1386
1227
+ save_policy_outputs: 4.9534
1228
+ split_output_tensors: 2.3552
1229
+ [2023-03-26 18:07:38,783][29927] RolloutWorker_w7 profile tree view:
1230
+ wait_for_trajectories: 0.0860, enqueue_policy_requests: 4.8443, env_step: 71.0832, overhead: 5.2545, complete_rollouts: 0.1498
1231
+ save_policy_outputs: 5.3212
1232
+ split_output_tensors: 2.5308
1233
+ [2023-03-26 18:07:38,783][29927] Loop Runner_EvtLoop terminating...
1234
+ [2023-03-26 18:07:38,783][29927] Runner profile tree view:
1235
+ main_loop: 141.4099
1236
+ [2023-03-26 18:07:38,783][29927] Collected {0: 4005888}, FPS: 26242.7