sergey-antonov
commited on
Commit
•
c808aa9
1
Parent(s):
abb6b2b
Upload . with huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1679842604.debian +3 -0
- .summary/0/events.out.tfevents.1679842606.debian +3 -0
- .summary/0/events.out.tfevents.1679842923.debian +3 -0
- .summary/0/events.out.tfevents.1679843004.debian +3 -0
- .summary/0/events.out.tfevents.1679843115.debian +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000824_3375104_reward_24.707.pth +3 -0
- checkpoint_p0/checkpoint_000000824_3375104.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +1236 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1679842604.debian
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f6ef1512af92c5d2ed23977c5aab37d1d0319ca7892eaf63fe1a67a4c4f2068
|
3 |
+
size 40
|
.summary/0/events.out.tfevents.1679842606.debian
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9066e75831695739280e51dcf4b1d3812e95973932e7164324f974cee36a9c3
|
3 |
+
size 40
|
.summary/0/events.out.tfevents.1679842923.debian
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9483f0cb5f8d398273b504a82631c440dcb02534520e2885ffe9b4473d5f55d8
|
3 |
+
size 22503
|
.summary/0/events.out.tfevents.1679843004.debian
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:503248f8d2fe85b030ef4cbb57c38bd31026c4cd783dade323d07da2d17cc9cd
|
3 |
+
size 110
|
.summary/0/events.out.tfevents.1679843115.debian
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b74bb9649a10bcc2e6df5aa27595f97da062b1153b309f6d253e9c619b6e218
|
3 |
+
size 133552
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 13.66 +/- 5.39
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r sergey-antonov/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000824_3375104_reward_24.707.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b14fb43b0b71abf0d0240184b0c9116d98942fe224819d6bd02128ecc4ccbb1
|
3 |
+
size 34928806
|
checkpoint_p0/checkpoint_000000824_3375104.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10245483978c1dde455e59fc7b2b8c8547b64eb2ed29c3c7b09e20037e82220a
|
3 |
+
size 34929220
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c920264d5adf2eab8d0eb5c437fdd462ea7393a3804d5aae33d3433eb18f5ac1
|
3 |
+
size 34929220
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/home/hit/nnet/hf/rl/unit9/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:113ed927245d13f8646a38b71b2961005745c4661119af9e7484b725994ba5e5
|
3 |
+
size 26803448
|
sf_log.txt
ADDED
@@ -0,0 +1,1236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-03-26 18:02:05,029][28680] Saving configuration to /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/config.json...
|
2 |
+
[2023-03-26 18:02:05,029][28680] Rollout worker 0 uses device cpu
|
3 |
+
[2023-03-26 18:02:05,029][28680] Rollout worker 1 uses device cpu
|
4 |
+
[2023-03-26 18:02:05,029][28680] Rollout worker 2 uses device cpu
|
5 |
+
[2023-03-26 18:02:05,029][28680] Rollout worker 3 uses device cpu
|
6 |
+
[2023-03-26 18:02:05,030][28680] Rollout worker 4 uses device cpu
|
7 |
+
[2023-03-26 18:02:05,030][28680] Rollout worker 5 uses device cpu
|
8 |
+
[2023-03-26 18:02:05,030][28680] Rollout worker 6 uses device cpu
|
9 |
+
[2023-03-26 18:02:05,030][28680] Rollout worker 7 uses device cpu
|
10 |
+
[2023-03-26 18:02:05,063][28680] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2023-03-26 18:02:05,063][28680] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2023-03-26 18:02:05,081][28680] Starting all processes...
|
13 |
+
[2023-03-26 18:02:05,081][28680] Starting process learner_proc0
|
14 |
+
[2023-03-26 18:02:05,978][28680] Starting all processes...
|
15 |
+
[2023-03-26 18:02:05,980][28695] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
16 |
+
[2023-03-26 18:02:05,981][28695] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
17 |
+
[2023-03-26 18:02:05,981][28680] Starting process inference_proc0-0
|
18 |
+
[2023-03-26 18:02:05,981][28680] Starting process rollout_proc0
|
19 |
+
[2023-03-26 18:02:05,981][28680] Starting process rollout_proc1
|
20 |
+
[2023-03-26 18:02:05,981][28680] Starting process rollout_proc2
|
21 |
+
[2023-03-26 18:02:05,981][28680] Starting process rollout_proc3
|
22 |
+
[2023-03-26 18:02:05,983][28680] Starting process rollout_proc4
|
23 |
+
[2023-03-26 18:02:05,985][28680] Starting process rollout_proc5
|
24 |
+
[2023-03-26 18:02:05,990][28695] Num visible devices: 1
|
25 |
+
[2023-03-26 18:02:05,985][28680] Starting process rollout_proc6
|
26 |
+
[2023-03-26 18:02:05,986][28680] Starting process rollout_proc7
|
27 |
+
[2023-03-26 18:02:06,017][28695] Starting seed is not provided
|
28 |
+
[2023-03-26 18:02:06,017][28695] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
29 |
+
[2023-03-26 18:02:06,017][28695] Initializing actor-critic model on device cuda:0
|
30 |
+
[2023-03-26 18:02:06,018][28695] RunningMeanStd input shape: (3, 72, 128)
|
31 |
+
[2023-03-26 18:02:06,018][28695] RunningMeanStd input shape: (1,)
|
32 |
+
[2023-03-26 18:02:06,026][28695] ConvEncoder: input_channels=3
|
33 |
+
[2023-03-26 18:02:06,137][28695] Conv encoder output size: 512
|
34 |
+
[2023-03-26 18:02:06,137][28695] Policy head output size: 512
|
35 |
+
[2023-03-26 18:02:06,162][28695] Created Actor Critic model with architecture:
|
36 |
+
[2023-03-26 18:02:06,163][28695] ActorCriticSharedWeights(
|
37 |
+
(obs_normalizer): ObservationNormalizer(
|
38 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
39 |
+
(running_mean_std): ModuleDict(
|
40 |
+
(obs): RunningMeanStdInPlace()
|
41 |
+
)
|
42 |
+
)
|
43 |
+
)
|
44 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
45 |
+
(encoder): VizdoomEncoder(
|
46 |
+
(basic_encoder): ConvEncoder(
|
47 |
+
(enc): RecursiveScriptModule(
|
48 |
+
original_name=ConvEncoderImpl
|
49 |
+
(conv_head): RecursiveScriptModule(
|
50 |
+
original_name=Sequential
|
51 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
52 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
53 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
54 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
55 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
56 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
57 |
+
)
|
58 |
+
(mlp_layers): RecursiveScriptModule(
|
59 |
+
original_name=Sequential
|
60 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
61 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
62 |
+
)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(core): ModelCoreRNN(
|
67 |
+
(core): GRU(512, 512)
|
68 |
+
)
|
69 |
+
(decoder): MlpDecoder(
|
70 |
+
(mlp): Identity()
|
71 |
+
)
|
72 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
73 |
+
(action_parameterization): ActionParameterizationDefault(
|
74 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
[2023-03-26 18:02:07,157][28712] Worker 3 uses CPU cores [6, 7]
|
78 |
+
[2023-03-26 18:02:07,190][28730] Worker 6 uses CPU cores [12, 13]
|
79 |
+
[2023-03-26 18:02:07,193][28708] Worker 0 uses CPU cores [0, 1]
|
80 |
+
[2023-03-26 18:02:07,200][28709] Worker 1 uses CPU cores [2, 3]
|
81 |
+
[2023-03-26 18:02:07,256][28710] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
82 |
+
[2023-03-26 18:02:07,256][28710] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
83 |
+
[2023-03-26 18:02:07,266][28710] Num visible devices: 1
|
84 |
+
[2023-03-26 18:02:07,330][28731] Worker 7 uses CPU cores [14, 15]
|
85 |
+
[2023-03-26 18:02:07,358][28711] Worker 2 uses CPU cores [4, 5]
|
86 |
+
[2023-03-26 18:02:07,465][28713] Worker 4 uses CPU cores [8, 9]
|
87 |
+
[2023-03-26 18:02:07,498][28729] Worker 5 uses CPU cores [10, 11]
|
88 |
+
[2023-03-26 18:02:08,648][28695] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2023-03-26 18:02:08,649][28695] No checkpoints found
|
90 |
+
[2023-03-26 18:02:08,649][28695] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2023-03-26 18:02:08,649][28695] Initialized policy 0 weights for model version 0
|
92 |
+
[2023-03-26 18:02:08,650][28695] LearnerWorker_p0 finished initialization!
|
93 |
+
[2023-03-26 18:02:08,651][28695] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2023-03-26 18:02:08,759][28710] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2023-03-26 18:02:08,760][28710] RunningMeanStd input shape: (1,)
|
96 |
+
[2023-03-26 18:02:08,767][28710] ConvEncoder: input_channels=3
|
97 |
+
[2023-03-26 18:02:08,842][28710] Conv encoder output size: 512
|
98 |
+
[2023-03-26 18:02:08,842][28710] Policy head output size: 512
|
99 |
+
[2023-03-26 18:02:09,444][28680] Inference worker 0-0 is ready!
|
100 |
+
[2023-03-26 18:02:09,444][28680] All inference workers are ready! Signal rollout workers to start!
|
101 |
+
[2023-03-26 18:02:09,485][28708] Doom resolution: 160x120, resize resolution: (128, 72)
|
102 |
+
[2023-03-26 18:02:09,485][28709] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2023-03-26 18:02:09,485][28729] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2023-03-26 18:02:09,485][28711] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2023-03-26 18:02:09,485][28730] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2023-03-26 18:02:09,491][28731] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2023-03-26 18:02:09,492][28713] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2023-03-26 18:02:09,492][28712] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2023-03-26 18:02:09,634][28708] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
|
110 |
+
[2023-03-26 18:02:09,634][28712] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
|
111 |
+
[2023-03-26 18:02:09,634][28709] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
|
112 |
+
[2023-03-26 18:02:09,634][28729] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
|
113 |
+
[2023-03-26 18:02:09,635][28712] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
114 |
+
Traceback (most recent call last):
|
115 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
|
116 |
+
self.game.init()
|
117 |
+
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
|
118 |
+
|
119 |
+
During handling of the above exception, another exception occurred:
|
120 |
+
|
121 |
+
Traceback (most recent call last):
|
122 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
123 |
+
slot_callable(*args)
|
124 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
125 |
+
env_runner.init(self.timing)
|
126 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
127 |
+
self._reset()
|
128 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
129 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
130 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
|
131 |
+
return self.env.reset(**kwargs)
|
132 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
133 |
+
obs, info = self.env.reset(**kwargs)
|
134 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
135 |
+
obs, info = self.env.reset(**kwargs)
|
136 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
137 |
+
return self.env.reset(**kwargs)
|
138 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 379, in reset
|
139 |
+
obs, info = self.env.reset(**kwargs)
|
140 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
|
141 |
+
obs, info = self.env.reset(**kwargs)
|
142 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
|
143 |
+
return self.env.reset(**kwargs)
|
144 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
|
145 |
+
return self.env.reset(**kwargs)
|
146 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
|
147 |
+
self._ensure_initialized()
|
148 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
|
149 |
+
self.initialize()
|
150 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
|
151 |
+
self._game_init()
|
152 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
|
153 |
+
raise EnvCriticalError()
|
154 |
+
sample_factory.envs.env_utils.EnvCriticalError
|
155 |
+
[2023-03-26 18:02:09,635][28708] EvtLoop [rollout_proc0_evt_loop, process=rollout_proc0] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
156 |
+
Traceback (most recent call last):
|
157 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
|
158 |
+
self.game.init()
|
159 |
+
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
|
160 |
+
|
161 |
+
During handling of the above exception, another exception occurred:
|
162 |
+
|
163 |
+
Traceback (most recent call last):
|
164 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
165 |
+
slot_callable(*args)
|
166 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
167 |
+
env_runner.init(self.timing)
|
168 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
169 |
+
self._reset()
|
170 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
171 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
172 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
|
173 |
+
return self.env.reset(**kwargs)
|
174 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
175 |
+
obs, info = self.env.reset(**kwargs)
|
176 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
177 |
+
obs, info = self.env.reset(**kwargs)
|
178 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
179 |
+
return self.env.reset(**kwargs)
|
180 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 379, in reset
|
181 |
+
obs, info = self.env.reset(**kwargs)
|
182 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
|
183 |
+
obs, info = self.env.reset(**kwargs)
|
184 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
|
185 |
+
return self.env.reset(**kwargs)
|
186 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
|
187 |
+
return self.env.reset(**kwargs)
|
188 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
|
189 |
+
self._ensure_initialized()
|
190 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
|
191 |
+
self.initialize()
|
192 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
|
193 |
+
self._game_init()
|
194 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
|
195 |
+
raise EnvCriticalError()
|
196 |
+
sample_factory.envs.env_utils.EnvCriticalError
|
197 |
+
[2023-03-26 18:02:09,635][28709] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
198 |
+
Traceback (most recent call last):
|
199 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
|
200 |
+
self.game.init()
|
201 |
+
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
|
202 |
+
|
203 |
+
During handling of the above exception, another exception occurred:
|
204 |
+
|
205 |
+
Traceback (most recent call last):
|
206 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
207 |
+
slot_callable(*args)
|
208 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
209 |
+
env_runner.init(self.timing)
|
210 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
211 |
+
self._reset()
|
212 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
213 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
214 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
|
215 |
+
return self.env.reset(**kwargs)
|
216 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
217 |
+
obs, info = self.env.reset(**kwargs)
|
218 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
219 |
+
obs, info = self.env.reset(**kwargs)
|
220 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
221 |
+
return self.env.reset(**kwargs)
|
222 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 379, in reset
|
223 |
+
obs, info = self.env.reset(**kwargs)
|
224 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
|
225 |
+
obs, info = self.env.reset(**kwargs)
|
226 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
|
227 |
+
return self.env.reset(**kwargs)
|
228 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
|
229 |
+
return self.env.reset(**kwargs)
|
230 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
|
231 |
+
self._ensure_initialized()
|
232 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
|
233 |
+
self.initialize()
|
234 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
|
235 |
+
self._game_init()
|
236 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
|
237 |
+
raise EnvCriticalError()
|
238 |
+
sample_factory.envs.env_utils.EnvCriticalError
|
239 |
+
[2023-03-26 18:02:09,635][28729] EvtLoop [rollout_proc5_evt_loop, process=rollout_proc5] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
240 |
+
Traceback (most recent call last):
|
241 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
|
242 |
+
self.game.init()
|
243 |
+
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
|
244 |
+
|
245 |
+
During handling of the above exception, another exception occurred:
|
246 |
+
|
247 |
+
Traceback (most recent call last):
|
248 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
249 |
+
slot_callable(*args)
|
250 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
251 |
+
env_runner.init(self.timing)
|
252 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
253 |
+
self._reset()
|
254 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
255 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
256 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
|
257 |
+
return self.env.reset(**kwargs)
|
258 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
259 |
+
obs, info = self.env.reset(**kwargs)
|
260 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
261 |
+
obs, info = self.env.reset(**kwargs)
|
262 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
263 |
+
return self.env.reset(**kwargs)
|
264 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 379, in reset
|
265 |
+
obs, info = self.env.reset(**kwargs)
|
266 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
|
267 |
+
obs, info = self.env.reset(**kwargs)
|
268 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 323, in reset
|
269 |
+
return self.env.reset(**kwargs)
|
270 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
|
271 |
+
return self.env.reset(**kwargs)
|
272 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
|
273 |
+
self._ensure_initialized()
|
274 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
|
275 |
+
self.initialize()
|
276 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
|
277 |
+
self._game_init()
|
278 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
|
279 |
+
raise EnvCriticalError()
|
280 |
+
sample_factory.envs.env_utils.EnvCriticalError
|
281 |
+
[2023-03-26 18:02:09,638][28712] Unhandled exception in evt loop rollout_proc3_evt_loop
|
282 |
+
[2023-03-26 18:02:09,638][28708] Unhandled exception in evt loop rollout_proc0_evt_loop
|
283 |
+
[2023-03-26 18:02:09,638][28709] Unhandled exception in evt loop rollout_proc1_evt_loop
|
284 |
+
[2023-03-26 18:02:09,638][28729] Unhandled exception in evt loop rollout_proc5_evt_loop
|
285 |
+
[2023-03-26 18:02:09,838][28713] Decorrelating experience for 0 frames...
|
286 |
+
[2023-03-26 18:02:09,839][28731] Decorrelating experience for 0 frames...
|
287 |
+
[2023-03-26 18:02:09,847][28730] Decorrelating experience for 0 frames...
|
288 |
+
[2023-03-26 18:02:09,847][28711] Decorrelating experience for 0 frames...
|
289 |
+
[2023-03-26 18:02:10,023][28711] Decorrelating experience for 32 frames...
|
290 |
+
[2023-03-26 18:02:10,023][28730] Decorrelating experience for 32 frames...
|
291 |
+
[2023-03-26 18:02:10,026][28713] Decorrelating experience for 32 frames...
|
292 |
+
[2023-03-26 18:02:10,222][28731] Decorrelating experience for 32 frames...
|
293 |
+
[2023-03-26 18:02:10,236][28713] Decorrelating experience for 64 frames...
|
294 |
+
[2023-03-26 18:02:10,237][28730] Decorrelating experience for 64 frames...
|
295 |
+
[2023-03-26 18:02:10,238][28711] Decorrelating experience for 64 frames...
|
296 |
+
[2023-03-26 18:02:10,412][28731] Decorrelating experience for 64 frames...
|
297 |
+
[2023-03-26 18:02:10,428][28713] Decorrelating experience for 96 frames...
|
298 |
+
[2023-03-26 18:02:10,430][28730] Decorrelating experience for 96 frames...
|
299 |
+
[2023-03-26 18:02:10,608][28731] Decorrelating experience for 96 frames...
|
300 |
+
[2023-03-26 18:02:10,631][28711] Decorrelating experience for 96 frames...
|
301 |
+
[2023-03-26 18:02:11,738][28695] Signal inference workers to stop experience collection...
|
302 |
+
[2023-03-26 18:02:11,741][28710] InferenceWorker_p0-w0: stopping experience collection
|
303 |
+
[2023-03-26 18:02:12,665][28695] Signal inference workers to resume experience collection...
|
304 |
+
[2023-03-26 18:02:12,666][28710] InferenceWorker_p0-w0: resuming experience collection
|
305 |
+
[2023-03-26 18:02:13,122][28680] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4096. Throughput: 0: nan. Samples: 2232. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
306 |
+
[2023-03-26 18:02:13,122][28680] Avg episode reward: [(0, '3.506')]
|
307 |
+
[2023-03-26 18:02:15,674][28710] Updated weights for policy 0, policy_version 10 (0.0258)
|
308 |
+
[2023-03-26 18:02:18,122][28680] Fps is (10 sec: 13926.5, 60 sec: 13926.5, 300 sec: 13926.5). Total num frames: 73728. Throughput: 0: 1578.8. Samples: 10126. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
|
309 |
+
[2023-03-26 18:02:18,122][28680] Avg episode reward: [(0, '4.262')]
|
310 |
+
[2023-03-26 18:02:18,512][28710] Updated weights for policy 0, policy_version 20 (0.0005)
|
311 |
+
[2023-03-26 18:02:21,007][28710] Updated weights for policy 0, policy_version 30 (0.0006)
|
312 |
+
[2023-03-26 18:02:23,122][28680] Fps is (10 sec: 14745.7, 60 sec: 14745.7, 300 sec: 14745.7). Total num frames: 151552. Throughput: 0: 3076.4. Samples: 32996. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
313 |
+
[2023-03-26 18:02:23,122][28680] Avg episode reward: [(0, '4.314')]
|
314 |
+
[2023-03-26 18:02:23,126][28695] Saving new best policy, reward=4.314!
|
315 |
+
[2023-03-26 18:02:23,987][28710] Updated weights for policy 0, policy_version 40 (0.0006)
|
316 |
+
[2023-03-26 18:02:25,057][28680] Heartbeat connected on Batcher_0
|
317 |
+
[2023-03-26 18:02:25,060][28680] Heartbeat connected on LearnerWorker_p0
|
318 |
+
[2023-03-26 18:02:25,066][28680] Heartbeat connected on InferenceWorker_p0-w0
|
319 |
+
[2023-03-26 18:02:25,071][28680] Heartbeat connected on RolloutWorker_w2
|
320 |
+
[2023-03-26 18:02:25,076][28680] Heartbeat connected on RolloutWorker_w4
|
321 |
+
[2023-03-26 18:02:25,078][28680] Heartbeat connected on RolloutWorker_w6
|
322 |
+
[2023-03-26 18:02:25,081][28680] Heartbeat connected on RolloutWorker_w7
|
323 |
+
[2023-03-26 18:02:26,686][28710] Updated weights for policy 0, policy_version 50 (0.0006)
|
324 |
+
[2023-03-26 18:02:28,122][28680] Fps is (10 sec: 15155.1, 60 sec: 14745.6, 300 sec: 14745.6). Total num frames: 225280. Throughput: 0: 3488.9. Samples: 54566. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
325 |
+
[2023-03-26 18:02:28,122][28680] Avg episode reward: [(0, '4.403')]
|
326 |
+
[2023-03-26 18:02:28,123][28695] Saving new best policy, reward=4.403!
|
327 |
+
[2023-03-26 18:02:29,415][28710] Updated weights for policy 0, policy_version 60 (0.0006)
|
328 |
+
[2023-03-26 18:02:31,832][28710] Updated weights for policy 0, policy_version 70 (0.0006)
|
329 |
+
[2023-03-26 18:02:32,422][28711] EvtLoop [rollout_proc2_evt_loop, process=rollout_proc2] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance2'), args=(1, 0)
|
330 |
+
Traceback (most recent call last):
|
331 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
332 |
+
slot_callable(*args)
|
333 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
334 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
335 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
336 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
337 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
|
338 |
+
return self.env.step(action)
|
339 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
340 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
341 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
342 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
343 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
344 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
345 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 384, in step
|
346 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
347 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
348 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
349 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
|
350 |
+
return self.env.step(action)
|
351 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
352 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
353 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
354 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
355 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
356 |
+
[2023-03-26 18:02:32,422][28713] EvtLoop [rollout_proc4_evt_loop, process=rollout_proc4] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance4'), args=(1, 0)
|
357 |
+
Traceback (most recent call last):
|
358 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
359 |
+
slot_callable(*args)
|
360 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
361 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
362 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
363 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
364 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
|
365 |
+
return self.env.step(action)
|
366 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
367 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
368 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
369 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
370 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
371 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
372 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 384, in step
|
373 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
374 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
375 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
376 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
|
377 |
+
return self.env.step(action)
|
378 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
379 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
380 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
381 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
382 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
383 |
+
[2023-03-26 18:02:32,426][28711] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc2_evt_loop
|
384 |
+
[2023-03-26 18:02:32,426][28713] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc4_evt_loop
|
385 |
+
[2023-03-26 18:02:32,428][28731] EvtLoop [rollout_proc7_evt_loop, process=rollout_proc7] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance7'), args=(1, 0)
|
386 |
+
Traceback (most recent call last):
|
387 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
388 |
+
slot_callable(*args)
|
389 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
390 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
391 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
392 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
393 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
|
394 |
+
return self.env.step(action)
|
395 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
396 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
397 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
398 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
399 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
400 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
401 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 384, in step
|
402 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
403 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
404 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
405 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
|
406 |
+
return self.env.step(action)
|
407 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
408 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
409 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
410 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
411 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
412 |
+
[2023-03-26 18:02:32,429][28731] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc7_evt_loop
|
413 |
+
[2023-03-26 18:02:32,428][28730] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance6'), args=(1, 0)
|
414 |
+
Traceback (most recent call last):
|
415 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
416 |
+
slot_callable(*args)
|
417 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
418 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
419 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
420 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
421 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
|
422 |
+
return self.env.step(action)
|
423 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
424 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
425 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
426 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
427 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
428 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
429 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 384, in step
|
430 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
431 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 88, in step
|
432 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
433 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 319, in step
|
434 |
+
return self.env.step(action)
|
435 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
436 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
437 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
438 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
439 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
440 |
+
[2023-03-26 18:02:32,429][28730] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc6_evt_loop
|
441 |
+
[2023-03-26 18:02:32,431][28680] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 28680], exiting...
|
442 |
+
[2023-03-26 18:02:32,431][28680] Runner profile tree view:
|
443 |
+
main_loop: 27.3507
|
444 |
+
[2023-03-26 18:02:32,431][28680] Collected {0: 294912}, FPS: 10782.6
|
445 |
+
[2023-03-26 18:02:32,432][28695] Stopping Batcher_0...
|
446 |
+
[2023-03-26 18:02:32,432][28695] Loop batcher_evt_loop terminating...
|
447 |
+
[2023-03-26 18:02:32,433][28695] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth...
|
448 |
+
[2023-03-26 18:02:32,484][28695] Stopping LearnerWorker_p0...
|
449 |
+
[2023-03-26 18:02:32,484][28695] Loop learner_proc0_evt_loop terminating...
|
450 |
+
[2023-03-26 18:02:32,492][28710] Weights refcount: 2 0
|
451 |
+
[2023-03-26 18:02:32,493][28710] Stopping InferenceWorker_p0-w0...
|
452 |
+
[2023-03-26 18:02:32,493][28710] Loop inference_proc0-0_evt_loop terminating...
|
453 |
+
[2023-03-26 18:03:26,534][29286] Saving configuration to /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/config.json...
|
454 |
+
[2023-03-26 18:03:26,534][29286] Rollout worker 0 uses device cpu
|
455 |
+
[2023-03-26 18:03:26,534][29286] Rollout worker 1 uses device cpu
|
456 |
+
[2023-03-26 18:03:26,535][29286] Rollout worker 2 uses device cpu
|
457 |
+
[2023-03-26 18:03:26,535][29286] Rollout worker 3 uses device cpu
|
458 |
+
[2023-03-26 18:03:26,535][29286] Rollout worker 4 uses device cpu
|
459 |
+
[2023-03-26 18:03:26,535][29286] Rollout worker 5 uses device cpu
|
460 |
+
[2023-03-26 18:03:26,535][29286] Rollout worker 6 uses device cpu
|
461 |
+
[2023-03-26 18:03:26,535][29286] Rollout worker 7 uses device cpu
|
462 |
+
[2023-03-26 18:03:26,568][29286] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
463 |
+
[2023-03-26 18:03:26,568][29286] InferenceWorker_p0-w0: min num requests: 2
|
464 |
+
[2023-03-26 18:03:26,585][29286] Starting all processes...
|
465 |
+
[2023-03-26 18:03:26,585][29286] Starting process learner_proc0
|
466 |
+
[2023-03-26 18:03:27,728][29286] Starting all processes...
|
467 |
+
[2023-03-26 18:03:27,731][29300] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
468 |
+
[2023-03-26 18:03:27,731][29300] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
469 |
+
[2023-03-26 18:03:27,731][29286] Starting process inference_proc0-0
|
470 |
+
[2023-03-26 18:03:27,731][29286] Starting process rollout_proc0
|
471 |
+
[2023-03-26 18:03:27,731][29286] Starting process rollout_proc1
|
472 |
+
[2023-03-26 18:03:27,731][29286] Starting process rollout_proc2
|
473 |
+
[2023-03-26 18:03:27,731][29286] Starting process rollout_proc3
|
474 |
+
[2023-03-26 18:03:27,735][29286] Starting process rollout_proc4
|
475 |
+
[2023-03-26 18:03:27,738][29300] Num visible devices: 1
|
476 |
+
[2023-03-26 18:03:27,735][29286] Starting process rollout_proc5
|
477 |
+
[2023-03-26 18:03:27,736][29286] Starting process rollout_proc6
|
478 |
+
[2023-03-26 18:03:27,738][29286] Starting process rollout_proc7
|
479 |
+
[2023-03-26 18:03:27,756][29300] Starting seed is not provided
|
480 |
+
[2023-03-26 18:03:27,756][29300] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
481 |
+
[2023-03-26 18:03:27,756][29300] Initializing actor-critic model on device cuda:0
|
482 |
+
[2023-03-26 18:03:27,757][29300] RunningMeanStd input shape: (3, 72, 128)
|
483 |
+
[2023-03-26 18:03:27,757][29300] RunningMeanStd input shape: (1,)
|
484 |
+
[2023-03-26 18:03:27,767][29300] ConvEncoder: input_channels=3
|
485 |
+
[2023-03-26 18:03:27,871][29300] Conv encoder output size: 512
|
486 |
+
[2023-03-26 18:03:27,871][29300] Policy head output size: 512
|
487 |
+
[2023-03-26 18:03:27,886][29300] Created Actor Critic model with architecture:
|
488 |
+
[2023-03-26 18:03:27,886][29300] ActorCriticSharedWeights(
|
489 |
+
(obs_normalizer): ObservationNormalizer(
|
490 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
491 |
+
(running_mean_std): ModuleDict(
|
492 |
+
(obs): RunningMeanStdInPlace()
|
493 |
+
)
|
494 |
+
)
|
495 |
+
)
|
496 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
497 |
+
(encoder): VizdoomEncoder(
|
498 |
+
(basic_encoder): ConvEncoder(
|
499 |
+
(enc): RecursiveScriptModule(
|
500 |
+
original_name=ConvEncoderImpl
|
501 |
+
(conv_head): RecursiveScriptModule(
|
502 |
+
original_name=Sequential
|
503 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
504 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
505 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
506 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
507 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
508 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
509 |
+
)
|
510 |
+
(mlp_layers): RecursiveScriptModule(
|
511 |
+
original_name=Sequential
|
512 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
513 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
514 |
+
)
|
515 |
+
)
|
516 |
+
)
|
517 |
+
)
|
518 |
+
(core): ModelCoreRNN(
|
519 |
+
(core): GRU(512, 512)
|
520 |
+
)
|
521 |
+
(decoder): MlpDecoder(
|
522 |
+
(mlp): Identity()
|
523 |
+
)
|
524 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
525 |
+
(action_parameterization): ActionParameterizationDefault(
|
526 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
527 |
+
)
|
528 |
+
)
|
529 |
+
[2023-03-26 18:03:29,126][29340] Worker 7 uses CPU cores [14, 15]
|
530 |
+
[2023-03-26 18:03:29,132][29342] Worker 5 uses CPU cores [10, 11]
|
531 |
+
[2023-03-26 18:03:29,221][29321] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
532 |
+
[2023-03-26 18:03:29,221][29321] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
533 |
+
[2023-03-26 18:03:29,231][29321] Num visible devices: 1
|
534 |
+
[2023-03-26 18:03:29,303][29339] Worker 3 uses CPU cores [6, 7]
|
535 |
+
[2023-03-26 18:03:29,342][29322] Worker 2 uses CPU cores [4, 5]
|
536 |
+
[2023-03-26 18:03:29,389][29323] Worker 1 uses CPU cores [2, 3]
|
537 |
+
[2023-03-26 18:03:29,453][29320] Worker 0 uses CPU cores [0, 1]
|
538 |
+
[2023-03-26 18:03:29,521][29344] Worker 6 uses CPU cores [12, 13]
|
539 |
+
[2023-03-26 18:03:29,562][29343] Worker 4 uses CPU cores [8, 9]
|
540 |
+
[2023-03-26 18:03:29,611][29300] Using optimizer <class 'torch.optim.adam.Adam'>
|
541 |
+
[2023-03-26 18:03:29,611][29300] Loading state from checkpoint /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth...
|
542 |
+
[2023-03-26 18:03:29,643][29300] Loading model from checkpoint
|
543 |
+
[2023-03-26 18:03:29,645][29300] Loaded experiment state at self.train_step=72, self.env_steps=294912
|
544 |
+
[2023-03-26 18:03:29,645][29300] Initialized policy 0 weights for model version 72
|
545 |
+
[2023-03-26 18:03:29,647][29300] LearnerWorker_p0 finished initialization!
|
546 |
+
[2023-03-26 18:03:29,647][29300] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
547 |
+
[2023-03-26 18:03:29,739][29321] RunningMeanStd input shape: (3, 72, 128)
|
548 |
+
[2023-03-26 18:03:29,740][29321] RunningMeanStd input shape: (1,)
|
549 |
+
[2023-03-26 18:03:29,748][29321] ConvEncoder: input_channels=3
|
550 |
+
[2023-03-26 18:03:29,816][29321] Conv encoder output size: 512
|
551 |
+
[2023-03-26 18:03:29,817][29321] Policy head output size: 512
|
552 |
+
[2023-03-26 18:03:30,414][29286] Inference worker 0-0 is ready!
|
553 |
+
[2023-03-26 18:03:30,415][29286] All inference workers are ready! Signal rollout workers to start!
|
554 |
+
[2023-03-26 18:03:30,421][29320] Doom resolution: 160x120, resize resolution: (128, 72)
|
555 |
+
[2023-03-26 18:03:30,421][29342] Doom resolution: 160x120, resize resolution: (128, 72)
|
556 |
+
[2023-03-26 18:03:30,422][29323] Doom resolution: 160x120, resize resolution: (128, 72)
|
557 |
+
[2023-03-26 18:03:30,422][29344] Doom resolution: 160x120, resize resolution: (128, 72)
|
558 |
+
[2023-03-26 18:03:30,422][29339] Doom resolution: 160x120, resize resolution: (128, 72)
|
559 |
+
[2023-03-26 18:03:30,423][29343] Doom resolution: 160x120, resize resolution: (128, 72)
|
560 |
+
[2023-03-26 18:03:30,424][29340] Doom resolution: 160x120, resize resolution: (128, 72)
|
561 |
+
[2023-03-26 18:03:30,424][29322] Doom resolution: 160x120, resize resolution: (128, 72)
|
562 |
+
[2023-03-26 18:03:30,616][29340] EvtLoop [rollout_proc7_evt_loop, process=rollout_proc7] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
563 |
+
Traceback (most recent call last):
|
564 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
565 |
+
slot_callable(*args)
|
566 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
567 |
+
env_runner.init(self.timing)
|
568 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
569 |
+
self._reset()
|
570 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
571 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
572 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
|
573 |
+
return self.env.reset(**kwargs)
|
574 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
575 |
+
obs, info = self.env.reset(**kwargs)
|
576 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
577 |
+
obs, info = self.env.reset(**kwargs)
|
578 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
579 |
+
return self.env.reset(**kwargs)
|
580 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
|
581 |
+
return self.observation(self.env.reset(**kwargs))
|
582 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
|
583 |
+
observation = self._transpose(observation)
|
584 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
|
585 |
+
return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
|
586 |
+
File "<__array_function__ internals>", line 180, in transpose
|
587 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
|
588 |
+
return _wrapfunc(a, 'transpose', axes)
|
589 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
|
590 |
+
return _wrapit(obj, method, *args, **kwds)
|
591 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
|
592 |
+
result = getattr(asarray(obj), method)(*args, **kwds)
|
593 |
+
ValueError: axes don't match array
|
594 |
+
[2023-03-26 18:03:30,617][29340] Unhandled exception axes don't match array in evt loop rollout_proc7_evt_loop
|
595 |
+
[2023-03-26 18:03:30,617][29344] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
596 |
+
Traceback (most recent call last):
|
597 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
598 |
+
slot_callable(*args)
|
599 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
600 |
+
env_runner.init(self.timing)
|
601 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
602 |
+
self._reset()
|
603 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
604 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
605 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
|
606 |
+
return self.env.reset(**kwargs)
|
607 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
608 |
+
obs, info = self.env.reset(**kwargs)
|
609 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
610 |
+
obs, info = self.env.reset(**kwargs)
|
611 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
612 |
+
return self.env.reset(**kwargs)
|
613 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
|
614 |
+
return self.observation(self.env.reset(**kwargs))
|
615 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
|
616 |
+
observation = self._transpose(observation)
|
617 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
|
618 |
+
return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
|
619 |
+
File "<__array_function__ internals>", line 180, in transpose
|
620 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
|
621 |
+
return _wrapfunc(a, 'transpose', axes)
|
622 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
|
623 |
+
return _wrapit(obj, method, *args, **kwds)
|
624 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
|
625 |
+
result = getattr(asarray(obj), method)(*args, **kwds)
|
626 |
+
ValueError: axes don't match array
|
627 |
+
[2023-03-26 18:03:30,618][29344] Unhandled exception axes don't match array in evt loop rollout_proc6_evt_loop
|
628 |
+
[2023-03-26 18:03:30,620][29320] EvtLoop [rollout_proc0_evt_loop, process=rollout_proc0] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
629 |
+
Traceback (most recent call last):
|
630 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
631 |
+
slot_callable(*args)
|
632 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
633 |
+
env_runner.init(self.timing)
|
634 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
635 |
+
self._reset()
|
636 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
637 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
638 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
|
639 |
+
return self.env.reset(**kwargs)
|
640 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
641 |
+
obs, info = self.env.reset(**kwargs)
|
642 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
643 |
+
obs, info = self.env.reset(**kwargs)
|
644 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
645 |
+
return self.env.reset(**kwargs)
|
646 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
|
647 |
+
return self.observation(self.env.reset(**kwargs))
|
648 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
|
649 |
+
observation = self._transpose(observation)
|
650 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
|
651 |
+
return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
|
652 |
+
File "<__array_function__ internals>", line 180, in transpose
|
653 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
|
654 |
+
return _wrapfunc(a, 'transpose', axes)
|
655 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
|
656 |
+
return _wrapit(obj, method, *args, **kwds)
|
657 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
|
658 |
+
result = getattr(asarray(obj), method)(*args, **kwds)
|
659 |
+
ValueError: axes don't match array
|
660 |
+
[2023-03-26 18:03:30,621][29320] Unhandled exception axes don't match array in evt loop rollout_proc0_evt_loop
|
661 |
+
[2023-03-26 18:03:30,625][29343] EvtLoop [rollout_proc4_evt_loop, process=rollout_proc4] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
662 |
+
Traceback (most recent call last):
|
663 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
664 |
+
slot_callable(*args)
|
665 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
666 |
+
env_runner.init(self.timing)
|
667 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
668 |
+
self._reset()
|
669 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
670 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
671 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
|
672 |
+
return self.env.reset(**kwargs)
|
673 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
674 |
+
obs, info = self.env.reset(**kwargs)
|
675 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
676 |
+
obs, info = self.env.reset(**kwargs)
|
677 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
678 |
+
return self.env.reset(**kwargs)
|
679 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
|
680 |
+
return self.observation(self.env.reset(**kwargs))
|
681 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
|
682 |
+
observation = self._transpose(observation)
|
683 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
|
684 |
+
return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
|
685 |
+
File "<__array_function__ internals>", line 180, in transpose
|
686 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
|
687 |
+
return _wrapfunc(a, 'transpose', axes)
|
688 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
|
689 |
+
return _wrapit(obj, method, *args, **kwds)
|
690 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
|
691 |
+
result = getattr(asarray(obj), method)(*args, **kwds)
|
692 |
+
ValueError: axes don't match array
|
693 |
+
[2023-03-26 18:03:30,626][29343] Unhandled exception axes don't match array in evt loop rollout_proc4_evt_loop
|
694 |
+
[2023-03-26 18:03:30,823][29342] EvtLoop [rollout_proc5_evt_loop, process=rollout_proc5] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
695 |
+
Traceback (most recent call last):
|
696 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
697 |
+
slot_callable(*args)
|
698 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
699 |
+
env_runner.init(self.timing)
|
700 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
701 |
+
self._reset()
|
702 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
703 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
704 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
|
705 |
+
return self.env.reset(**kwargs)
|
706 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
707 |
+
obs, info = self.env.reset(**kwargs)
|
708 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
709 |
+
obs, info = self.env.reset(**kwargs)
|
710 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
711 |
+
return self.env.reset(**kwargs)
|
712 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
|
713 |
+
return self.observation(self.env.reset(**kwargs))
|
714 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
|
715 |
+
observation = self._transpose(observation)
|
716 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
|
717 |
+
return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
|
718 |
+
File "<__array_function__ internals>", line 180, in transpose
|
719 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
|
720 |
+
return _wrapfunc(a, 'transpose', axes)
|
721 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
|
722 |
+
return _wrapit(obj, method, *args, **kwds)
|
723 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
|
724 |
+
result = getattr(asarray(obj), method)(*args, **kwds)
|
725 |
+
ValueError: axes don't match array
|
726 |
+
[2023-03-26 18:03:30,825][29342] Unhandled exception axes don't match array in evt loop rollout_proc5_evt_loop
|
727 |
+
[2023-03-26 18:03:30,901][29339] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
728 |
+
Traceback (most recent call last):
|
729 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
730 |
+
slot_callable(*args)
|
731 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
732 |
+
env_runner.init(self.timing)
|
733 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
734 |
+
self._reset()
|
735 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
736 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
737 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
|
738 |
+
return self.env.reset(**kwargs)
|
739 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
740 |
+
obs, info = self.env.reset(**kwargs)
|
741 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
742 |
+
obs, info = self.env.reset(**kwargs)
|
743 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
744 |
+
return self.env.reset(**kwargs)
|
745 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
|
746 |
+
return self.observation(self.env.reset(**kwargs))
|
747 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
|
748 |
+
observation = self._transpose(observation)
|
749 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
|
750 |
+
return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
|
751 |
+
File "<__array_function__ internals>", line 180, in transpose
|
752 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
|
753 |
+
return _wrapfunc(a, 'transpose', axes)
|
754 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
|
755 |
+
return _wrapit(obj, method, *args, **kwds)
|
756 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
|
757 |
+
result = getattr(asarray(obj), method)(*args, **kwds)
|
758 |
+
ValueError: axes don't match array
|
759 |
+
[2023-03-26 18:03:30,902][29339] Unhandled exception axes don't match array in evt loop rollout_proc3_evt_loop
|
760 |
+
[2023-03-26 18:03:31,024][29323] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
761 |
+
Traceback (most recent call last):
|
762 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
763 |
+
slot_callable(*args)
|
764 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
765 |
+
env_runner.init(self.timing)
|
766 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
767 |
+
self._reset()
|
768 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
769 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
770 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
|
771 |
+
return self.env.reset(**kwargs)
|
772 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
773 |
+
obs, info = self.env.reset(**kwargs)
|
774 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
775 |
+
obs, info = self.env.reset(**kwargs)
|
776 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
777 |
+
return self.env.reset(**kwargs)
|
778 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
|
779 |
+
return self.observation(self.env.reset(**kwargs))
|
780 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
|
781 |
+
observation = self._transpose(observation)
|
782 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
|
783 |
+
return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
|
784 |
+
File "<__array_function__ internals>", line 180, in transpose
|
785 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
|
786 |
+
return _wrapfunc(a, 'transpose', axes)
|
787 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
|
788 |
+
return _wrapit(obj, method, *args, **kwds)
|
789 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
|
790 |
+
result = getattr(asarray(obj), method)(*args, **kwds)
|
791 |
+
ValueError: axes don't match array
|
792 |
+
[2023-03-26 18:03:31,025][29323] Unhandled exception axes don't match array in evt loop rollout_proc1_evt_loop
|
793 |
+
[2023-03-26 18:03:31,123][29322] EvtLoop [rollout_proc2_evt_loop, process=rollout_proc2] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
794 |
+
Traceback (most recent call last):
|
795 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
796 |
+
slot_callable(*args)
|
797 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
798 |
+
env_runner.init(self.timing)
|
799 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
800 |
+
self._reset()
|
801 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
802 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
803 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 283, in reset
|
804 |
+
return self.env.reset(**kwargs)
|
805 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
806 |
+
obs, info = self.env.reset(**kwargs)
|
807 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
808 |
+
obs, info = self.env.reset(**kwargs)
|
809 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
810 |
+
return self.env.reset(**kwargs)
|
811 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/gym/core.py", line 311, in reset
|
812 |
+
return self.observation(self.env.reset(**kwargs))
|
813 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 191, in observation
|
814 |
+
observation = self._transpose(observation)
|
815 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 182, in _transpose
|
816 |
+
return np.transpose(obs, (2, 0, 1)) # HWC to CHW for PyTorch
|
817 |
+
File "<__array_function__ internals>", line 180, in transpose
|
818 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 660, in transpose
|
819 |
+
return _wrapfunc(a, 'transpose', axes)
|
820 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 54, in _wrapfunc
|
821 |
+
return _wrapit(obj, method, *args, **kwds)
|
822 |
+
File "/home/hit/app/rl310/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 43, in _wrapit
|
823 |
+
result = getattr(asarray(obj), method)(*args, **kwds)
|
824 |
+
ValueError: axes don't match array
|
825 |
+
[2023-03-26 18:03:31,124][29322] Unhandled exception axes don't match array in evt loop rollout_proc2_evt_loop
|
826 |
+
[2023-03-26 18:03:34,329][29286] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 294912. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
827 |
+
[2023-03-26 18:03:34,985][29286] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 29286], exiting...
|
828 |
+
[2023-03-26 18:03:34,986][29286] Runner profile tree view:
|
829 |
+
main_loop: 8.4004
|
830 |
+
[2023-03-26 18:03:34,986][29286] Collected {0: 294912}, FPS: 0.0
|
831 |
+
[2023-03-26 18:03:34,986][29300] Stopping Batcher_0...
|
832 |
+
[2023-03-26 18:03:34,986][29300] Loop batcher_evt_loop terminating...
|
833 |
+
[2023-03-26 18:03:34,987][29300] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth...
|
834 |
+
[2023-03-26 18:03:35,045][29321] Weights refcount: 2 0
|
835 |
+
[2023-03-26 18:03:35,046][29321] Stopping InferenceWorker_p0-w0...
|
836 |
+
[2023-03-26 18:03:35,046][29321] Loop inference_proc0-0_evt_loop terminating...
|
837 |
+
[2023-03-26 18:03:35,138][29300] Stopping LearnerWorker_p0...
|
838 |
+
[2023-03-26 18:03:35,138][29300] Loop learner_proc0_evt_loop terminating...
|
839 |
+
[2023-03-26 18:05:17,326][29927] Saving configuration to /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/config.json...
|
840 |
+
[2023-03-26 18:05:17,326][29927] Rollout worker 0 uses device cpu
|
841 |
+
[2023-03-26 18:05:17,326][29927] Rollout worker 1 uses device cpu
|
842 |
+
[2023-03-26 18:05:17,326][29927] Rollout worker 2 uses device cpu
|
843 |
+
[2023-03-26 18:05:17,326][29927] Rollout worker 3 uses device cpu
|
844 |
+
[2023-03-26 18:05:17,326][29927] Rollout worker 4 uses device cpu
|
845 |
+
[2023-03-26 18:05:17,326][29927] Rollout worker 5 uses device cpu
|
846 |
+
[2023-03-26 18:05:17,327][29927] Rollout worker 6 uses device cpu
|
847 |
+
[2023-03-26 18:05:17,327][29927] Rollout worker 7 uses device cpu
|
848 |
+
[2023-03-26 18:05:17,358][29927] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
849 |
+
[2023-03-26 18:05:17,358][29927] InferenceWorker_p0-w0: min num requests: 2
|
850 |
+
[2023-03-26 18:05:17,373][29927] Starting all processes...
|
851 |
+
[2023-03-26 18:05:17,373][29927] Starting process learner_proc0
|
852 |
+
[2023-03-26 18:05:18,342][29927] Starting all processes...
|
853 |
+
[2023-03-26 18:05:18,345][29977] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
854 |
+
[2023-03-26 18:05:18,345][29977] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
855 |
+
[2023-03-26 18:05:18,347][29927] Starting process inference_proc0-0
|
856 |
+
[2023-03-26 18:05:18,347][29927] Starting process rollout_proc0
|
857 |
+
[2023-03-26 18:05:18,347][29927] Starting process rollout_proc1
|
858 |
+
[2023-03-26 18:05:18,348][29927] Starting process rollout_proc2
|
859 |
+
[2023-03-26 18:05:18,353][29977] Num visible devices: 1
|
860 |
+
[2023-03-26 18:05:18,348][29927] Starting process rollout_proc3
|
861 |
+
[2023-03-26 18:05:18,350][29927] Starting process rollout_proc4
|
862 |
+
[2023-03-26 18:05:18,352][29927] Starting process rollout_proc5
|
863 |
+
[2023-03-26 18:05:18,367][29977] Starting seed is not provided
|
864 |
+
[2023-03-26 18:05:18,368][29977] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
865 |
+
[2023-03-26 18:05:18,368][29977] Initializing actor-critic model on device cuda:0
|
866 |
+
[2023-03-26 18:05:18,368][29977] RunningMeanStd input shape: (3, 72, 128)
|
867 |
+
[2023-03-26 18:05:18,368][29977] RunningMeanStd input shape: (1,)
|
868 |
+
[2023-03-26 18:05:18,364][29927] Starting process rollout_proc6
|
869 |
+
[2023-03-26 18:05:18,364][29927] Starting process rollout_proc7
|
870 |
+
[2023-03-26 18:05:18,376][29977] ConvEncoder: input_channels=3
|
871 |
+
[2023-03-26 18:05:18,460][29977] Conv encoder output size: 512
|
872 |
+
[2023-03-26 18:05:18,460][29977] Policy head output size: 512
|
873 |
+
[2023-03-26 18:05:18,469][29977] Created Actor Critic model with architecture:
|
874 |
+
[2023-03-26 18:05:18,469][29977] ActorCriticSharedWeights(
|
875 |
+
(obs_normalizer): ObservationNormalizer(
|
876 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
877 |
+
(running_mean_std): ModuleDict(
|
878 |
+
(obs): RunningMeanStdInPlace()
|
879 |
+
)
|
880 |
+
)
|
881 |
+
)
|
882 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
883 |
+
(encoder): VizdoomEncoder(
|
884 |
+
(basic_encoder): ConvEncoder(
|
885 |
+
(enc): RecursiveScriptModule(
|
886 |
+
original_name=ConvEncoderImpl
|
887 |
+
(conv_head): RecursiveScriptModule(
|
888 |
+
original_name=Sequential
|
889 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
890 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
891 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
892 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
893 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
894 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
895 |
+
)
|
896 |
+
(mlp_layers): RecursiveScriptModule(
|
897 |
+
original_name=Sequential
|
898 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
899 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
900 |
+
)
|
901 |
+
)
|
902 |
+
)
|
903 |
+
)
|
904 |
+
(core): ModelCoreRNN(
|
905 |
+
(core): GRU(512, 512)
|
906 |
+
)
|
907 |
+
(decoder): MlpDecoder(
|
908 |
+
(mlp): Identity()
|
909 |
+
)
|
910 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
911 |
+
(action_parameterization): ActionParameterizationDefault(
|
912 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
913 |
+
)
|
914 |
+
)
|
915 |
+
[2023-03-26 18:05:19,651][30009] Worker 3 uses CPU cores [6, 7]
|
916 |
+
[2023-03-26 18:05:19,661][29990] Worker 0 uses CPU cores [0, 1]
|
917 |
+
[2023-03-26 18:05:19,770][30011] Worker 5 uses CPU cores [10, 11]
|
918 |
+
[2023-03-26 18:05:19,770][30013] Worker 6 uses CPU cores [12, 13]
|
919 |
+
[2023-03-26 18:05:19,805][29992] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
920 |
+
[2023-03-26 18:05:19,805][29992] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
921 |
+
[2023-03-26 18:05:19,822][29992] Num visible devices: 1
|
922 |
+
[2023-03-26 18:05:19,846][29977] Using optimizer <class 'torch.optim.adam.Adam'>
|
923 |
+
[2023-03-26 18:05:19,847][29977] Loading state from checkpoint /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth...
|
924 |
+
[2023-03-26 18:05:19,864][30014] Worker 7 uses CPU cores [14, 15]
|
925 |
+
[2023-03-26 18:05:19,885][30012] Worker 4 uses CPU cores [8, 9]
|
926 |
+
[2023-03-26 18:05:19,889][30008] Worker 2 uses CPU cores [4, 5]
|
927 |
+
[2023-03-26 18:05:19,894][29991] Worker 1 uses CPU cores [2, 3]
|
928 |
+
[2023-03-26 18:05:20,046][29977] Loading model from checkpoint
|
929 |
+
[2023-03-26 18:05:20,056][29977] Loaded experiment state at self.train_step=72, self.env_steps=294912
|
930 |
+
[2023-03-26 18:05:20,068][29977] Initialized policy 0 weights for model version 72
|
931 |
+
[2023-03-26 18:05:20,135][29977] LearnerWorker_p0 finished initialization!
|
932 |
+
[2023-03-26 18:05:20,135][29977] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
933 |
+
[2023-03-26 18:05:20,313][29992] RunningMeanStd input shape: (3, 72, 128)
|
934 |
+
[2023-03-26 18:05:20,314][29992] RunningMeanStd input shape: (1,)
|
935 |
+
[2023-03-26 18:05:20,330][29992] ConvEncoder: input_channels=3
|
936 |
+
[2023-03-26 18:05:20,342][29927] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 294912. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
937 |
+
[2023-03-26 18:05:20,630][29992] Conv encoder output size: 512
|
938 |
+
[2023-03-26 18:05:20,630][29992] Policy head output size: 512
|
939 |
+
[2023-03-26 18:05:21,515][29927] Inference worker 0-0 is ready!
|
940 |
+
[2023-03-26 18:05:21,515][29927] All inference workers are ready! Signal rollout workers to start!
|
941 |
+
[2023-03-26 18:05:21,548][30008] Doom resolution: 160x120, resize resolution: (128, 72)
|
942 |
+
[2023-03-26 18:05:21,549][30011] Doom resolution: 160x120, resize resolution: (128, 72)
|
943 |
+
[2023-03-26 18:05:21,552][30014] Doom resolution: 160x120, resize resolution: (128, 72)
|
944 |
+
[2023-03-26 18:05:21,552][30013] Doom resolution: 160x120, resize resolution: (128, 72)
|
945 |
+
[2023-03-26 18:05:21,553][29991] Doom resolution: 160x120, resize resolution: (128, 72)
|
946 |
+
[2023-03-26 18:05:21,553][30012] Doom resolution: 160x120, resize resolution: (128, 72)
|
947 |
+
[2023-03-26 18:05:21,553][29990] Doom resolution: 160x120, resize resolution: (128, 72)
|
948 |
+
[2023-03-26 18:05:21,571][30009] Doom resolution: 160x120, resize resolution: (128, 72)
|
949 |
+
[2023-03-26 18:05:21,909][30008] Decorrelating experience for 0 frames...
|
950 |
+
[2023-03-26 18:05:21,909][29990] Decorrelating experience for 0 frames...
|
951 |
+
[2023-03-26 18:05:21,909][30012] Decorrelating experience for 0 frames...
|
952 |
+
[2023-03-26 18:05:21,918][29991] Decorrelating experience for 0 frames...
|
953 |
+
[2023-03-26 18:05:21,918][30011] Decorrelating experience for 0 frames...
|
954 |
+
[2023-03-26 18:05:22,080][30008] Decorrelating experience for 32 frames...
|
955 |
+
[2023-03-26 18:05:22,106][30009] Decorrelating experience for 0 frames...
|
956 |
+
[2023-03-26 18:05:22,107][29990] Decorrelating experience for 32 frames...
|
957 |
+
[2023-03-26 18:05:22,107][30011] Decorrelating experience for 32 frames...
|
958 |
+
[2023-03-26 18:05:22,108][30012] Decorrelating experience for 32 frames...
|
959 |
+
[2023-03-26 18:05:22,107][30014] Decorrelating experience for 0 frames...
|
960 |
+
[2023-03-26 18:05:22,297][30014] Decorrelating experience for 32 frames...
|
961 |
+
[2023-03-26 18:05:22,297][30009] Decorrelating experience for 32 frames...
|
962 |
+
[2023-03-26 18:05:22,306][30008] Decorrelating experience for 64 frames...
|
963 |
+
[2023-03-26 18:05:22,317][30013] Decorrelating experience for 0 frames...
|
964 |
+
[2023-03-26 18:05:22,319][30011] Decorrelating experience for 64 frames...
|
965 |
+
[2023-03-26 18:05:22,492][30013] Decorrelating experience for 32 frames...
|
966 |
+
[2023-03-26 18:05:22,493][30009] Decorrelating experience for 64 frames...
|
967 |
+
[2023-03-26 18:05:22,504][30008] Decorrelating experience for 96 frames...
|
968 |
+
[2023-03-26 18:05:22,531][29990] Decorrelating experience for 64 frames...
|
969 |
+
[2023-03-26 18:05:22,532][30012] Decorrelating experience for 64 frames...
|
970 |
+
[2023-03-26 18:05:22,674][30011] Decorrelating experience for 96 frames...
|
971 |
+
[2023-03-26 18:05:22,690][30013] Decorrelating experience for 64 frames...
|
972 |
+
[2023-03-26 18:05:22,729][29990] Decorrelating experience for 96 frames...
|
973 |
+
[2023-03-26 18:05:22,860][30014] Decorrelating experience for 64 frames...
|
974 |
+
[2023-03-26 18:05:22,882][30013] Decorrelating experience for 96 frames...
|
975 |
+
[2023-03-26 18:05:22,903][30009] Decorrelating experience for 96 frames...
|
976 |
+
[2023-03-26 18:05:22,935][30012] Decorrelating experience for 96 frames...
|
977 |
+
[2023-03-26 18:05:23,047][29991] Decorrelating experience for 32 frames...
|
978 |
+
[2023-03-26 18:05:23,063][30014] Decorrelating experience for 96 frames...
|
979 |
+
[2023-03-26 18:05:23,254][29991] Decorrelating experience for 64 frames...
|
980 |
+
[2023-03-26 18:05:23,468][29991] Decorrelating experience for 96 frames...
|
981 |
+
[2023-03-26 18:05:23,740][29977] Signal inference workers to stop experience collection...
|
982 |
+
[2023-03-26 18:05:23,749][29992] InferenceWorker_p0-w0: stopping experience collection
|
983 |
+
[2023-03-26 18:05:24,787][29977] Signal inference workers to resume experience collection...
|
984 |
+
[2023-03-26 18:05:24,788][29992] InferenceWorker_p0-w0: resuming experience collection
|
985 |
+
[2023-03-26 18:05:25,342][29927] Fps is (10 sec: 819.2, 60 sec: 819.2, 300 sec: 819.2). Total num frames: 299008. Throughput: 0: 596.8. Samples: 2984. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
986 |
+
[2023-03-26 18:05:25,342][29927] Avg episode reward: [(0, '3.144')]
|
987 |
+
[2023-03-26 18:05:26,570][29992] Updated weights for policy 0, policy_version 82 (0.0258)
|
988 |
+
[2023-03-26 18:05:28,037][29992] Updated weights for policy 0, policy_version 92 (0.0006)
|
989 |
+
[2023-03-26 18:05:29,494][29992] Updated weights for policy 0, policy_version 102 (0.0006)
|
990 |
+
[2023-03-26 18:05:30,342][29927] Fps is (10 sec: 14336.2, 60 sec: 14336.2, 300 sec: 14336.2). Total num frames: 438272. Throughput: 0: 1778.6. Samples: 17786. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
991 |
+
[2023-03-26 18:05:30,342][29927] Avg episode reward: [(0, '4.552')]
|
992 |
+
[2023-03-26 18:05:30,353][29977] Saving new best policy, reward=4.552!
|
993 |
+
[2023-03-26 18:05:30,930][29992] Updated weights for policy 0, policy_version 112 (0.0006)
|
994 |
+
[2023-03-26 18:05:32,394][29992] Updated weights for policy 0, policy_version 122 (0.0006)
|
995 |
+
[2023-03-26 18:05:33,872][29992] Updated weights for policy 0, policy_version 132 (0.0006)
|
996 |
+
[2023-03-26 18:05:35,342][29927] Fps is (10 sec: 27852.7, 60 sec: 18841.7, 300 sec: 18841.7). Total num frames: 577536. Throughput: 0: 3982.2. Samples: 59732. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
997 |
+
[2023-03-26 18:05:35,342][29927] Avg episode reward: [(0, '4.635')]
|
998 |
+
[2023-03-26 18:05:35,345][29992] Updated weights for policy 0, policy_version 142 (0.0006)
|
999 |
+
[2023-03-26 18:05:35,345][29977] Saving new best policy, reward=4.635!
|
1000 |
+
[2023-03-26 18:05:36,830][29992] Updated weights for policy 0, policy_version 152 (0.0006)
|
1001 |
+
[2023-03-26 18:05:37,354][29927] Heartbeat connected on Batcher_0
|
1002 |
+
[2023-03-26 18:05:37,356][29927] Heartbeat connected on LearnerWorker_p0
|
1003 |
+
[2023-03-26 18:05:37,361][29927] Heartbeat connected on RolloutWorker_w0
|
1004 |
+
[2023-03-26 18:05:37,362][29927] Heartbeat connected on InferenceWorker_p0-w0
|
1005 |
+
[2023-03-26 18:05:37,365][29927] Heartbeat connected on RolloutWorker_w2
|
1006 |
+
[2023-03-26 18:05:37,366][29927] Heartbeat connected on RolloutWorker_w3
|
1007 |
+
[2023-03-26 18:05:37,368][29927] Heartbeat connected on RolloutWorker_w4
|
1008 |
+
[2023-03-26 18:05:37,368][29927] Heartbeat connected on RolloutWorker_w1
|
1009 |
+
[2023-03-26 18:05:37,369][29927] Heartbeat connected on RolloutWorker_w5
|
1010 |
+
[2023-03-26 18:05:37,371][29927] Heartbeat connected on RolloutWorker_w6
|
1011 |
+
[2023-03-26 18:05:37,373][29927] Heartbeat connected on RolloutWorker_w7
|
1012 |
+
[2023-03-26 18:05:38,366][29992] Updated weights for policy 0, policy_version 162 (0.0006)
|
1013 |
+
[2023-03-26 18:05:39,860][29992] Updated weights for policy 0, policy_version 172 (0.0006)
|
1014 |
+
[2023-03-26 18:05:40,342][29927] Fps is (10 sec: 27852.4, 60 sec: 21094.4, 300 sec: 21094.4). Total num frames: 716800. Throughput: 0: 5056.3. Samples: 101126. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
1015 |
+
[2023-03-26 18:05:40,342][29927] Avg episode reward: [(0, '4.628')]
|
1016 |
+
[2023-03-26 18:05:41,310][29992] Updated weights for policy 0, policy_version 182 (0.0006)
|
1017 |
+
[2023-03-26 18:05:42,797][29992] Updated weights for policy 0, policy_version 192 (0.0006)
|
1018 |
+
[2023-03-26 18:05:44,410][29992] Updated weights for policy 0, policy_version 202 (0.0007)
|
1019 |
+
[2023-03-26 18:05:45,342][29927] Fps is (10 sec: 27443.1, 60 sec: 22282.3, 300 sec: 22282.3). Total num frames: 851968. Throughput: 0: 4876.9. Samples: 121922. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0)
|
1020 |
+
[2023-03-26 18:05:45,342][29927] Avg episode reward: [(0, '5.026')]
|
1021 |
+
[2023-03-26 18:05:45,345][29977] Saving new best policy, reward=5.026!
|
1022 |
+
[2023-03-26 18:05:45,902][29992] Updated weights for policy 0, policy_version 212 (0.0006)
|
1023 |
+
[2023-03-26 18:05:47,346][29992] Updated weights for policy 0, policy_version 222 (0.0006)
|
1024 |
+
[2023-03-26 18:05:48,815][29992] Updated weights for policy 0, policy_version 232 (0.0006)
|
1025 |
+
[2023-03-26 18:05:50,179][29992] Updated weights for policy 0, policy_version 242 (0.0006)
|
1026 |
+
[2023-03-26 18:05:50,342][29927] Fps is (10 sec: 27852.9, 60 sec: 23347.2, 300 sec: 23347.2). Total num frames: 995328. Throughput: 0: 5421.9. Samples: 162658. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
1027 |
+
[2023-03-26 18:05:50,342][29927] Avg episode reward: [(0, '5.257')]
|
1028 |
+
[2023-03-26 18:05:50,344][29977] Saving new best policy, reward=5.257!
|
1029 |
+
[2023-03-26 18:05:51,614][29992] Updated weights for policy 0, policy_version 252 (0.0006)
|
1030 |
+
[2023-03-26 18:05:53,043][29992] Updated weights for policy 0, policy_version 262 (0.0006)
|
1031 |
+
[2023-03-26 18:05:54,518][29992] Updated weights for policy 0, policy_version 272 (0.0006)
|
1032 |
+
[2023-03-26 18:05:55,342][29927] Fps is (10 sec: 28262.4, 60 sec: 23990.9, 300 sec: 23990.9). Total num frames: 1134592. Throughput: 0: 5873.7. Samples: 205578. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1033 |
+
[2023-03-26 18:05:55,342][29927] Avg episode reward: [(0, '6.496')]
|
1034 |
+
[2023-03-26 18:05:55,391][29977] Saving new best policy, reward=6.496!
|
1035 |
+
[2023-03-26 18:05:55,972][29992] Updated weights for policy 0, policy_version 282 (0.0006)
|
1036 |
+
[2023-03-26 18:05:57,434][29992] Updated weights for policy 0, policy_version 292 (0.0006)
|
1037 |
+
[2023-03-26 18:05:58,854][29992] Updated weights for policy 0, policy_version 302 (0.0006)
|
1038 |
+
[2023-03-26 18:06:00,284][29992] Updated weights for policy 0, policy_version 312 (0.0006)
|
1039 |
+
[2023-03-26 18:06:00,342][29927] Fps is (10 sec: 28262.5, 60 sec: 24576.0, 300 sec: 24576.0). Total num frames: 1277952. Throughput: 0: 5669.3. Samples: 226772. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
1040 |
+
[2023-03-26 18:06:00,342][29927] Avg episode reward: [(0, '7.329')]
|
1041 |
+
[2023-03-26 18:06:00,343][29977] Saving new best policy, reward=7.329!
|
1042 |
+
[2023-03-26 18:06:01,731][29992] Updated weights for policy 0, policy_version 322 (0.0006)
|
1043 |
+
[2023-03-26 18:06:03,207][29992] Updated weights for policy 0, policy_version 332 (0.0006)
|
1044 |
+
[2023-03-26 18:06:04,696][29992] Updated weights for policy 0, policy_version 342 (0.0006)
|
1045 |
+
[2023-03-26 18:06:05,342][29927] Fps is (10 sec: 28262.2, 60 sec: 24940.1, 300 sec: 24940.1). Total num frames: 1417216. Throughput: 0: 5982.7. Samples: 269220. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
1046 |
+
[2023-03-26 18:06:05,342][29927] Avg episode reward: [(0, '7.245')]
|
1047 |
+
[2023-03-26 18:06:06,157][29992] Updated weights for policy 0, policy_version 352 (0.0006)
|
1048 |
+
[2023-03-26 18:06:07,584][29992] Updated weights for policy 0, policy_version 362 (0.0006)
|
1049 |
+
[2023-03-26 18:06:09,057][29992] Updated weights for policy 0, policy_version 372 (0.0006)
|
1050 |
+
[2023-03-26 18:06:10,342][29927] Fps is (10 sec: 27852.9, 60 sec: 25231.4, 300 sec: 25231.4). Total num frames: 1556480. Throughput: 0: 6848.3. Samples: 311156. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
1051 |
+
[2023-03-26 18:06:10,342][29927] Avg episode reward: [(0, '9.407')]
|
1052 |
+
[2023-03-26 18:06:10,368][29977] Saving new best policy, reward=9.407!
|
1053 |
+
[2023-03-26 18:06:10,526][29992] Updated weights for policy 0, policy_version 382 (0.0006)
|
1054 |
+
[2023-03-26 18:06:12,002][29992] Updated weights for policy 0, policy_version 392 (0.0006)
|
1055 |
+
[2023-03-26 18:06:13,471][29992] Updated weights for policy 0, policy_version 402 (0.0006)
|
1056 |
+
[2023-03-26 18:06:14,920][29992] Updated weights for policy 0, policy_version 412 (0.0006)
|
1057 |
+
[2023-03-26 18:06:15,342][29927] Fps is (10 sec: 27852.9, 60 sec: 25469.7, 300 sec: 25469.7). Total num frames: 1695744. Throughput: 0: 6985.5. Samples: 332132. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
1058 |
+
[2023-03-26 18:06:15,342][29927] Avg episode reward: [(0, '10.087')]
|
1059 |
+
[2023-03-26 18:06:15,350][29977] Saving new best policy, reward=10.087!
|
1060 |
+
[2023-03-26 18:06:16,436][29992] Updated weights for policy 0, policy_version 422 (0.0006)
|
1061 |
+
[2023-03-26 18:06:17,888][29992] Updated weights for policy 0, policy_version 432 (0.0006)
|
1062 |
+
[2023-03-26 18:06:19,344][29992] Updated weights for policy 0, policy_version 442 (0.0006)
|
1063 |
+
[2023-03-26 18:06:20,342][29927] Fps is (10 sec: 27852.6, 60 sec: 25668.3, 300 sec: 25668.3). Total num frames: 1835008. Throughput: 0: 6981.4. Samples: 373894. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1064 |
+
[2023-03-26 18:06:20,342][29927] Avg episode reward: [(0, '12.004')]
|
1065 |
+
[2023-03-26 18:06:20,364][29977] Saving new best policy, reward=12.004!
|
1066 |
+
[2023-03-26 18:06:20,796][29992] Updated weights for policy 0, policy_version 452 (0.0006)
|
1067 |
+
[2023-03-26 18:06:22,250][29992] Updated weights for policy 0, policy_version 462 (0.0006)
|
1068 |
+
[2023-03-26 18:06:23,734][29992] Updated weights for policy 0, policy_version 472 (0.0006)
|
1069 |
+
[2023-03-26 18:06:25,245][29992] Updated weights for policy 0, policy_version 482 (0.0006)
|
1070 |
+
[2023-03-26 18:06:25,342][29927] Fps is (10 sec: 27852.9, 60 sec: 27921.1, 300 sec: 25836.3). Total num frames: 1974272. Throughput: 0: 6991.6. Samples: 415748. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1071 |
+
[2023-03-26 18:06:25,342][29927] Avg episode reward: [(0, '17.983')]
|
1072 |
+
[2023-03-26 18:06:25,387][29977] Saving new best policy, reward=17.983!
|
1073 |
+
[2023-03-26 18:06:26,674][29992] Updated weights for policy 0, policy_version 492 (0.0006)
|
1074 |
+
[2023-03-26 18:06:28,130][29992] Updated weights for policy 0, policy_version 502 (0.0006)
|
1075 |
+
[2023-03-26 18:06:29,564][29992] Updated weights for policy 0, policy_version 512 (0.0006)
|
1076 |
+
[2023-03-26 18:06:30,342][29927] Fps is (10 sec: 28262.4, 60 sec: 27989.3, 300 sec: 26038.9). Total num frames: 2117632. Throughput: 0: 6999.7. Samples: 436910. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1077 |
+
[2023-03-26 18:06:30,342][29927] Avg episode reward: [(0, '17.345')]
|
1078 |
+
[2023-03-26 18:06:31,026][29992] Updated weights for policy 0, policy_version 522 (0.0006)
|
1079 |
+
[2023-03-26 18:06:32,483][29992] Updated weights for policy 0, policy_version 532 (0.0006)
|
1080 |
+
[2023-03-26 18:06:33,928][29992] Updated weights for policy 0, policy_version 542 (0.0006)
|
1081 |
+
[2023-03-26 18:06:35,342][29927] Fps is (10 sec: 28262.2, 60 sec: 27989.3, 300 sec: 26159.8). Total num frames: 2256896. Throughput: 0: 7034.1. Samples: 479192. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
1082 |
+
[2023-03-26 18:06:35,342][29927] Avg episode reward: [(0, '18.067')]
|
1083 |
+
[2023-03-26 18:06:35,369][29977] Saving new best policy, reward=18.067!
|
1084 |
+
[2023-03-26 18:06:35,369][29992] Updated weights for policy 0, policy_version 552 (0.0006)
|
1085 |
+
[2023-03-26 18:06:36,824][29992] Updated weights for policy 0, policy_version 562 (0.0006)
|
1086 |
+
[2023-03-26 18:06:38,257][29992] Updated weights for policy 0, policy_version 572 (0.0006)
|
1087 |
+
[2023-03-26 18:06:39,735][29992] Updated weights for policy 0, policy_version 582 (0.0006)
|
1088 |
+
[2023-03-26 18:06:40,342][29927] Fps is (10 sec: 28262.5, 60 sec: 28057.6, 300 sec: 26316.8). Total num frames: 2400256. Throughput: 0: 7026.0. Samples: 521750. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
1089 |
+
[2023-03-26 18:06:40,342][29927] Avg episode reward: [(0, '21.111')]
|
1090 |
+
[2023-03-26 18:06:40,344][29977] Saving new best policy, reward=21.111!
|
1091 |
+
[2023-03-26 18:06:41,195][29992] Updated weights for policy 0, policy_version 592 (0.0006)
|
1092 |
+
[2023-03-26 18:06:42,682][29992] Updated weights for policy 0, policy_version 602 (0.0006)
|
1093 |
+
[2023-03-26 18:06:44,139][29992] Updated weights for policy 0, policy_version 612 (0.0006)
|
1094 |
+
[2023-03-26 18:06:45,342][29927] Fps is (10 sec: 28262.6, 60 sec: 28125.9, 300 sec: 26407.2). Total num frames: 2539520. Throughput: 0: 7017.7. Samples: 542568. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1095 |
+
[2023-03-26 18:06:45,342][29927] Avg episode reward: [(0, '22.074')]
|
1096 |
+
[2023-03-26 18:06:45,344][29977] Saving new best policy, reward=22.074!
|
1097 |
+
[2023-03-26 18:06:45,578][29992] Updated weights for policy 0, policy_version 622 (0.0006)
|
1098 |
+
[2023-03-26 18:06:47,011][29992] Updated weights for policy 0, policy_version 632 (0.0006)
|
1099 |
+
[2023-03-26 18:06:48,491][29992] Updated weights for policy 0, policy_version 642 (0.0006)
|
1100 |
+
[2023-03-26 18:06:49,961][29992] Updated weights for policy 0, policy_version 652 (0.0006)
|
1101 |
+
[2023-03-26 18:06:50,342][29927] Fps is (10 sec: 27852.6, 60 sec: 28057.6, 300 sec: 26487.5). Total num frames: 2678784. Throughput: 0: 7011.5. Samples: 584738. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1102 |
+
[2023-03-26 18:06:50,342][29927] Avg episode reward: [(0, '21.318')]
|
1103 |
+
[2023-03-26 18:06:51,412][29992] Updated weights for policy 0, policy_version 662 (0.0006)
|
1104 |
+
[2023-03-26 18:06:52,851][29992] Updated weights for policy 0, policy_version 672 (0.0006)
|
1105 |
+
[2023-03-26 18:06:54,272][29992] Updated weights for policy 0, policy_version 682 (0.0006)
|
1106 |
+
[2023-03-26 18:06:55,342][29927] Fps is (10 sec: 28262.3, 60 sec: 28125.9, 300 sec: 26602.5). Total num frames: 2822144. Throughput: 0: 7026.6. Samples: 627352. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1107 |
+
[2023-03-26 18:06:55,342][29927] Avg episode reward: [(0, '23.056')]
|
1108 |
+
[2023-03-26 18:06:55,345][29977] Saving new best policy, reward=23.056!
|
1109 |
+
[2023-03-26 18:06:55,761][29992] Updated weights for policy 0, policy_version 692 (0.0006)
|
1110 |
+
[2023-03-26 18:06:57,242][29992] Updated weights for policy 0, policy_version 702 (0.0006)
|
1111 |
+
[2023-03-26 18:06:58,682][29992] Updated weights for policy 0, policy_version 712 (0.0006)
|
1112 |
+
[2023-03-26 18:07:00,106][29992] Updated weights for policy 0, policy_version 722 (0.0006)
|
1113 |
+
[2023-03-26 18:07:00,342][29927] Fps is (10 sec: 28262.5, 60 sec: 28057.6, 300 sec: 26665.0). Total num frames: 2961408. Throughput: 0: 7016.6. Samples: 647880. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
1114 |
+
[2023-03-26 18:07:00,342][29927] Avg episode reward: [(0, '22.628')]
|
1115 |
+
[2023-03-26 18:07:01,599][29992] Updated weights for policy 0, policy_version 732 (0.0006)
|
1116 |
+
[2023-03-26 18:07:03,173][29992] Updated weights for policy 0, policy_version 742 (0.0007)
|
1117 |
+
[2023-03-26 18:07:04,669][29992] Updated weights for policy 0, policy_version 752 (0.0007)
|
1118 |
+
[2023-03-26 18:07:05,342][29927] Fps is (10 sec: 27443.3, 60 sec: 27989.4, 300 sec: 26682.5). Total num frames: 3096576. Throughput: 0: 7011.9. Samples: 689428. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1119 |
+
[2023-03-26 18:07:05,342][29927] Avg episode reward: [(0, '22.380')]
|
1120 |
+
[2023-03-26 18:07:06,135][29992] Updated weights for policy 0, policy_version 762 (0.0006)
|
1121 |
+
[2023-03-26 18:07:07,628][29992] Updated weights for policy 0, policy_version 772 (0.0006)
|
1122 |
+
[2023-03-26 18:07:09,148][29992] Updated weights for policy 0, policy_version 782 (0.0006)
|
1123 |
+
[2023-03-26 18:07:10,342][29927] Fps is (10 sec: 27443.4, 60 sec: 27989.3, 300 sec: 26735.7). Total num frames: 3235840. Throughput: 0: 6997.0. Samples: 730612. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1124 |
+
[2023-03-26 18:07:10,342][29927] Avg episode reward: [(0, '18.703')]
|
1125 |
+
[2023-03-26 18:07:10,595][29992] Updated weights for policy 0, policy_version 792 (0.0006)
|
1126 |
+
[2023-03-26 18:07:12,083][29992] Updated weights for policy 0, policy_version 802 (0.0007)
|
1127 |
+
[2023-03-26 18:07:13,550][29992] Updated weights for policy 0, policy_version 812 (0.0007)
|
1128 |
+
[2023-03-26 18:07:15,034][29992] Updated weights for policy 0, policy_version 822 (0.0006)
|
1129 |
+
[2023-03-26 18:07:15,342][29927] Fps is (10 sec: 27852.7, 60 sec: 27989.3, 300 sec: 26784.3). Total num frames: 3375104. Throughput: 0: 6987.0. Samples: 751324. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
1130 |
+
[2023-03-26 18:07:15,342][29927] Avg episode reward: [(0, '24.707')]
|
1131 |
+
[2023-03-26 18:07:15,345][29977] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000824_3375104.pth...
|
1132 |
+
[2023-03-26 18:07:15,395][29977] Saving new best policy, reward=24.707!
|
1133 |
+
[2023-03-26 18:07:16,510][29992] Updated weights for policy 0, policy_version 832 (0.0006)
|
1134 |
+
[2023-03-26 18:07:17,986][29992] Updated weights for policy 0, policy_version 842 (0.0006)
|
1135 |
+
[2023-03-26 18:07:19,428][29992] Updated weights for policy 0, policy_version 852 (0.0006)
|
1136 |
+
[2023-03-26 18:07:20,342][29927] Fps is (10 sec: 27852.6, 60 sec: 27989.3, 300 sec: 26828.8). Total num frames: 3514368. Throughput: 0: 6976.8. Samples: 793150. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
1137 |
+
[2023-03-26 18:07:20,342][29927] Avg episode reward: [(0, '22.921')]
|
1138 |
+
[2023-03-26 18:07:20,925][29992] Updated weights for policy 0, policy_version 862 (0.0006)
|
1139 |
+
[2023-03-26 18:07:22,390][29992] Updated weights for policy 0, policy_version 872 (0.0006)
|
1140 |
+
[2023-03-26 18:07:23,920][29992] Updated weights for policy 0, policy_version 882 (0.0007)
|
1141 |
+
[2023-03-26 18:07:25,342][29927] Fps is (10 sec: 27443.1, 60 sec: 27921.0, 300 sec: 26837.0). Total num frames: 3649536. Throughput: 0: 6945.6. Samples: 834302. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
1142 |
+
[2023-03-26 18:07:25,342][29927] Avg episode reward: [(0, '23.368')]
|
1143 |
+
[2023-03-26 18:07:25,405][29992] Updated weights for policy 0, policy_version 892 (0.0006)
|
1144 |
+
[2023-03-26 18:07:26,893][29992] Updated weights for policy 0, policy_version 902 (0.0006)
|
1145 |
+
[2023-03-26 18:07:28,321][29992] Updated weights for policy 0, policy_version 912 (0.0006)
|
1146 |
+
[2023-03-26 18:07:29,734][29992] Updated weights for policy 0, policy_version 922 (0.0006)
|
1147 |
+
[2023-03-26 18:07:30,342][29927] Fps is (10 sec: 27853.0, 60 sec: 27921.1, 300 sec: 26907.6). Total num frames: 3792896. Throughput: 0: 6946.9. Samples: 855180. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
1148 |
+
[2023-03-26 18:07:30,342][29927] Avg episode reward: [(0, '20.870')]
|
1149 |
+
[2023-03-26 18:07:31,194][29992] Updated weights for policy 0, policy_version 932 (0.0006)
|
1150 |
+
[2023-03-26 18:07:32,616][29992] Updated weights for policy 0, policy_version 942 (0.0006)
|
1151 |
+
[2023-03-26 18:07:34,048][29992] Updated weights for policy 0, policy_version 952 (0.0006)
|
1152 |
+
[2023-03-26 18:07:35,342][29927] Fps is (10 sec: 28262.5, 60 sec: 27921.1, 300 sec: 26942.6). Total num frames: 3932160. Throughput: 0: 6965.0. Samples: 898162. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
1153 |
+
[2023-03-26 18:07:35,342][29927] Avg episode reward: [(0, '24.605')]
|
1154 |
+
[2023-03-26 18:07:35,504][29992] Updated weights for policy 0, policy_version 962 (0.0006)
|
1155 |
+
[2023-03-26 18:07:36,987][29992] Updated weights for policy 0, policy_version 972 (0.0006)
|
1156 |
+
[2023-03-26 18:07:37,877][29977] Stopping Batcher_0...
|
1157 |
+
[2023-03-26 18:07:37,877][29927] Component Batcher_0 stopped!
|
1158 |
+
[2023-03-26 18:07:37,877][29977] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
1159 |
+
[2023-03-26 18:07:37,877][29977] Loop batcher_evt_loop terminating...
|
1160 |
+
[2023-03-26 18:07:37,898][29992] Weights refcount: 2 0
|
1161 |
+
[2023-03-26 18:07:37,903][29992] Stopping InferenceWorker_p0-w0...
|
1162 |
+
[2023-03-26 18:07:37,903][29992] Loop inference_proc0-0_evt_loop terminating...
|
1163 |
+
[2023-03-26 18:07:37,903][29927] Component InferenceWorker_p0-w0 stopped!
|
1164 |
+
[2023-03-26 18:07:37,917][29977] Removing /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000072_294912.pth
|
1165 |
+
[2023-03-26 18:07:37,918][29977] Saving /home/hit/nnet/hf/rl/unit9/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
1166 |
+
[2023-03-26 18:07:37,930][29990] Stopping RolloutWorker_w0...
|
1167 |
+
[2023-03-26 18:07:37,930][30012] Stopping RolloutWorker_w4...
|
1168 |
+
[2023-03-26 18:07:37,930][29927] Component RolloutWorker_w0 stopped!
|
1169 |
+
[2023-03-26 18:07:37,930][29990] Loop rollout_proc0_evt_loop terminating...
|
1170 |
+
[2023-03-26 18:07:37,930][29927] Component RolloutWorker_w4 stopped!
|
1171 |
+
[2023-03-26 18:07:37,930][30012] Loop rollout_proc4_evt_loop terminating...
|
1172 |
+
[2023-03-26 18:07:37,930][30013] Stopping RolloutWorker_w6...
|
1173 |
+
[2023-03-26 18:07:37,931][29927] Component RolloutWorker_w6 stopped!
|
1174 |
+
[2023-03-26 18:07:37,931][30013] Loop rollout_proc6_evt_loop terminating...
|
1175 |
+
[2023-03-26 18:07:37,931][30014] Stopping RolloutWorker_w7...
|
1176 |
+
[2023-03-26 18:07:37,931][29927] Component RolloutWorker_w7 stopped!
|
1177 |
+
[2023-03-26 18:07:37,931][30014] Loop rollout_proc7_evt_loop terminating...
|
1178 |
+
[2023-03-26 18:07:37,931][29927] Component RolloutWorker_w1 stopped!
|
1179 |
+
[2023-03-26 18:07:37,931][29991] Stopping RolloutWorker_w1...
|
1180 |
+
[2023-03-26 18:07:37,931][29927] Component RolloutWorker_w3 stopped!
|
1181 |
+
[2023-03-26 18:07:37,931][29927] Component RolloutWorker_w2 stopped!
|
1182 |
+
[2023-03-26 18:07:37,931][30009] Stopping RolloutWorker_w3...
|
1183 |
+
[2023-03-26 18:07:37,931][29991] Loop rollout_proc1_evt_loop terminating...
|
1184 |
+
[2023-03-26 18:07:37,931][30008] Stopping RolloutWorker_w2...
|
1185 |
+
[2023-03-26 18:07:37,932][29927] Component RolloutWorker_w5 stopped!
|
1186 |
+
[2023-03-26 18:07:37,932][30009] Loop rollout_proc3_evt_loop terminating...
|
1187 |
+
[2023-03-26 18:07:37,932][30008] Loop rollout_proc2_evt_loop terminating...
|
1188 |
+
[2023-03-26 18:07:37,932][30011] Stopping RolloutWorker_w5...
|
1189 |
+
[2023-03-26 18:07:37,932][30011] Loop rollout_proc5_evt_loop terminating...
|
1190 |
+
[2023-03-26 18:07:38,071][29977] Stopping LearnerWorker_p0...
|
1191 |
+
[2023-03-26 18:07:38,071][29927] Component LearnerWorker_p0 stopped!
|
1192 |
+
[2023-03-26 18:07:38,071][29977] Loop learner_proc0_evt_loop terminating...
|
1193 |
+
[2023-03-26 18:07:38,071][29927] Waiting for process learner_proc0 to stop...
|
1194 |
+
[2023-03-26 18:07:38,782][29927] Waiting for process inference_proc0-0 to join...
|
1195 |
+
[2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc0 to join...
|
1196 |
+
[2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc1 to join...
|
1197 |
+
[2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc2 to join...
|
1198 |
+
[2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc3 to join...
|
1199 |
+
[2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc4 to join...
|
1200 |
+
[2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc5 to join...
|
1201 |
+
[2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc6 to join...
|
1202 |
+
[2023-03-26 18:07:38,782][29927] Waiting for process rollout_proc7 to join...
|
1203 |
+
[2023-03-26 18:07:38,782][29927] Batcher 0 profile tree view:
|
1204 |
+
batching: 7.1332, releasing_batches: 0.0138
|
1205 |
+
[2023-03-26 18:07:38,782][29927] InferenceWorker_p0-w0 profile tree view:
|
1206 |
+
wait_policy: 0.0000
|
1207 |
+
wait_policy_total: 2.5493
|
1208 |
+
update_model: 2.0518
|
1209 |
+
weight_update: 0.0006
|
1210 |
+
one_step: 0.0010
|
1211 |
+
handle_policy_step: 124.2579
|
1212 |
+
deserialize: 5.1725, stack: 0.6572, obs_to_device_normalize: 34.1223, forward: 47.7467, send_messages: 6.9335
|
1213 |
+
prepare_outputs: 25.2262
|
1214 |
+
to_cpu: 19.2284
|
1215 |
+
[2023-03-26 18:07:38,782][29927] Learner 0 profile tree view:
|
1216 |
+
misc: 0.0033, prepare_batch: 10.1881
|
1217 |
+
train: 35.8925
|
1218 |
+
epoch_init: 0.0030, minibatch_init: 0.0047, losses_postprocess: 0.2331, kl_divergence: 0.2144, after_optimizer: 0.2908
|
1219 |
+
calculate_losses: 10.7378
|
1220 |
+
losses_init: 0.0019, forward_head: 0.6191, bptt_initial: 7.9405, tail: 0.3217, advantages_returns: 0.0921, losses: 0.9662
|
1221 |
+
bptt: 0.7048
|
1222 |
+
bptt_forward_core: 0.6812
|
1223 |
+
update: 24.1823
|
1224 |
+
clip: 0.6307
|
1225 |
+
[2023-03-26 18:07:38,783][29927] RolloutWorker_w0 profile tree view:
|
1226 |
+
wait_for_trajectories: 0.0830, enqueue_policy_requests: 4.4344, env_step: 69.2102, overhead: 4.7997, complete_rollouts: 0.1386
|
1227 |
+
save_policy_outputs: 4.9534
|
1228 |
+
split_output_tensors: 2.3552
|
1229 |
+
[2023-03-26 18:07:38,783][29927] RolloutWorker_w7 profile tree view:
|
1230 |
+
wait_for_trajectories: 0.0860, enqueue_policy_requests: 4.8443, env_step: 71.0832, overhead: 5.2545, complete_rollouts: 0.1498
|
1231 |
+
save_policy_outputs: 5.3212
|
1232 |
+
split_output_tensors: 2.5308
|
1233 |
+
[2023-03-26 18:07:38,783][29927] Loop Runner_EvtLoop terminating...
|
1234 |
+
[2023-03-26 18:07:38,783][29927] Runner profile tree view:
|
1235 |
+
main_loop: 141.4099
|
1236 |
+
[2023-03-26 18:07:38,783][29927] Collected {0: 4005888}, FPS: 26242.7
|