sepulm01 commited on
Commit
7b8df65
·
verified ·
1 Parent(s): 4d1457c

End of training

Browse files
README.md ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - es
4
+ license: cc-by-sa-4.0
5
+ library_name: span-marker
6
+ tags:
7
+ - span-marker
8
+ - token-classification
9
+ - ner
10
+ - named-entity-recognition
11
+ - generated_from_span_marker_trainer
12
+ datasets:
13
+ - conll2002
14
+ metrics:
15
+ - precision
16
+ - recall
17
+ - f1
18
+ widget:
19
+ - text: Por otro lado, el primer ministro portugués, Antonio Guterres, presidente
20
+ de turno del Consejo Europeo, recibió hoy al ministro del Interior de Colombia,
21
+ Hugo de la Calle, enviado especial del presidente de su país, Andrés Pastrana.
22
+ - text: Los consejeros de la Presidencia, Gaspar Zarrías, de Justicia, Carmen Hermosín,
23
+ y de Asuntos Sociales, Isaías Pérez Saldaña, darán comienzo mañana a los turnos
24
+ de comparecencias de los miembros del Gobierno andaluz en el Parlamento autonómico
25
+ para informar de las líneas de actuación de sus departamentos.
26
+ - text: '(SV2147) PP: PROBLEMAS INTERNOS PSOE INTERFIEREN EN POLITICA DE LA JUNTA
27
+ Córdoba (EFE).'
28
+ - text: Cuando vino a Soria, en febrero de 1998, para sustituir al entonces destituido
29
+ Antonio Gómez, estaba dirigiendo al Badajoz B en tercera división y consiguió
30
+ con el Numancia la permanencia en la última jornada frente al Hércules.
31
+ - text: El ministro ecuatoriano de Defensa, Hugo Unda, aseguró hoy que las Fuerzas
32
+ Armadas respetarán la decisión del Parlamento sobre la amnistía para los involucrados
33
+ en la asonada golpista del pasado 21 de enero, cuando fue derrocado el presidente
34
+ Jamil Mahuad.
35
+ pipeline_tag: token-classification
36
+ base_model: bert-base-cased
37
+ model-index:
38
+ - name: SpanMarker with bert-base-cased on conll2002
39
+ results:
40
+ - task:
41
+ type: token-classification
42
+ name: Named Entity Recognition
43
+ dataset:
44
+ name: Unknown
45
+ type: conll2002
46
+ split: test
47
+ metrics:
48
+ - type: f1
49
+ value: 0.8200812536273941
50
+ name: F1
51
+ - type: precision
52
+ value: 0.8331367924528302
53
+ name: Precision
54
+ - type: recall
55
+ value: 0.8074285714285714
56
+ name: Recall
57
+ ---
58
+
59
+ # SpanMarker with bert-base-cased on conll2002
60
+
61
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2002](https://huggingface.co/datasets/conll2002) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-cased](https://huggingface.co/bert-base-cased) as the underlying encoder.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** SpanMarker
67
+ - **Encoder:** [bert-base-cased](https://huggingface.co/bert-base-cased)
68
+ - **Maximum Sequence Length:** 256 tokens
69
+ - **Maximum Entity Length:** 8 words
70
+ - **Training Dataset:** [conll2002](https://huggingface.co/datasets/conll2002)
71
+ - **Language:** es
72
+ - **License:** cc-by-sa-4.0
73
+
74
+ ### Model Sources
75
+
76
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
77
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
78
+
79
+ ### Model Labels
80
+ | Label | Examples |
81
+ |:------|:------------------------------------------------------------------|
82
+ | LOC | "Victoria", "Australia", "Melbourne" |
83
+ | MISC | "Ley", "Ciudad", "CrimeNet" |
84
+ | ORG | "Tribunal Supremo", "EFE", "Commonwealth" |
85
+ | PER | "Abogado General del Estado", "Daryl Williams", "Abogado General" |
86
+
87
+ ## Evaluation
88
+
89
+ ### Metrics
90
+ | Label | Precision | Recall | F1 |
91
+ |:--------|:----------|:-------|:-------|
92
+ | **all** | 0.8331 | 0.8074 | 0.8201 |
93
+ | LOC | 0.8471 | 0.7759 | 0.8099 |
94
+ | MISC | 0.7092 | 0.4264 | 0.5326 |
95
+ | ORG | 0.7854 | 0.8558 | 0.8191 |
96
+ | PER | 0.9471 | 0.9329 | 0.9400 |
97
+
98
+ ## Uses
99
+
100
+ ### Direct Use for Inference
101
+
102
+ ```python
103
+ from span_marker import SpanMarkerModel
104
+
105
+ # Download from the 🤗 Hub
106
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
107
+ # Run inference
108
+ entities = model.predict("(SV2147) PP: PROBLEMAS INTERNOS PSOE INTERFIEREN EN POLITICA DE LA JUNTA Córdoba (EFE).")
109
+ ```
110
+
111
+ ### Downstream Use
112
+ You can finetune this model on your own dataset.
113
+
114
+ <details><summary>Click to expand</summary>
115
+
116
+ ```python
117
+ from span_marker import SpanMarkerModel, Trainer
118
+
119
+ # Download from the 🤗 Hub
120
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
121
+
122
+ # Specify a Dataset with "tokens" and "ner_tag" columns
123
+ dataset = load_dataset("conll2003") # For example CoNLL2003
124
+
125
+ # Initialize a Trainer using the pretrained model & dataset
126
+ trainer = Trainer(
127
+ model=model,
128
+ train_dataset=dataset["train"],
129
+ eval_dataset=dataset["validation"],
130
+ )
131
+ trainer.train()
132
+ trainer.save_model("span_marker_model_id-finetuned")
133
+ ```
134
+ </details>
135
+
136
+ <!--
137
+ ### Out-of-Scope Use
138
+
139
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
140
+ -->
141
+
142
+ <!--
143
+ ## Bias, Risks and Limitations
144
+
145
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
146
+ -->
147
+
148
+ <!--
149
+ ### Recommendations
150
+
151
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
152
+ -->
153
+
154
+ ## Training Details
155
+
156
+ ### Training Set Metrics
157
+ | Training set | Min | Median | Max |
158
+ |:----------------------|:----|:--------|:-----|
159
+ | Sentence length | 0 | 31.8014 | 1238 |
160
+ | Entities per sentence | 0 | 2.2583 | 160 |
161
+
162
+ ### Training Hyperparameters
163
+ - learning_rate: 5e-05
164
+ - train_batch_size: 4
165
+ - eval_batch_size: 4
166
+ - seed: 42
167
+ - gradient_accumulation_steps: 2
168
+ - total_train_batch_size: 8
169
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
170
+ - lr_scheduler_type: linear
171
+ - lr_scheduler_warmup_ratio: 0.1
172
+ - num_epochs: 1
173
+ - mixed_precision_training: Native AMP
174
+
175
+ ### Training Results
176
+ | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
177
+ |:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
178
+ | 0.1164 | 200 | 0.0260 | 0.6907 | 0.5358 | 0.6035 | 0.9264 |
179
+ | 0.2328 | 400 | 0.0199 | 0.7567 | 0.6384 | 0.6925 | 0.9414 |
180
+ | 0.3491 | 600 | 0.0176 | 0.7773 | 0.7273 | 0.7515 | 0.9563 |
181
+ | 0.4655 | 800 | 0.0157 | 0.8066 | 0.7598 | 0.7825 | 0.9601 |
182
+ | 0.5819 | 1000 | 0.0158 | 0.8031 | 0.7413 | 0.7710 | 0.9605 |
183
+ | 0.6983 | 1200 | 0.0156 | 0.7975 | 0.7598 | 0.7782 | 0.9609 |
184
+ | 0.8147 | 1400 | 0.0139 | 0.8210 | 0.7615 | 0.7901 | 0.9625 |
185
+ | 0.9310 | 1600 | 0.0129 | 0.8426 | 0.7848 | 0.8127 | 0.9651 |
186
+
187
+ ### Framework Versions
188
+ - Python: 3.10.12
189
+ - SpanMarker: 1.5.0
190
+ - Transformers: 4.38.2
191
+ - PyTorch: 2.2.1+cu121
192
+ - Datasets: 2.18.0
193
+ - Tokenizers: 0.15.2
194
+
195
+ ## Citation
196
+
197
+ ### BibTeX
198
+ ```
199
+ @software{Aarsen_SpanMarker,
200
+ author = {Aarsen, Tom},
201
+ license = {Apache-2.0},
202
+ title = {{SpanMarker for Named Entity Recognition}},
203
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
204
+ }
205
+ ```
206
+
207
+ <!--
208
+ ## Glossary
209
+
210
+ *Clearly define terms in order to be accessible across audiences.*
211
+ -->
212
+
213
+ <!--
214
+ ## Model Card Authors
215
+
216
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
217
+ -->
218
+
219
+ <!--
220
+ ## Model Card Contact
221
+
222
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
223
+ -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<end>": 28997,
3
+ "<start>": 28996
4
+ }
config.json ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SpanMarkerModel"
4
+ ],
5
+ "encoder": {
6
+ "_name_or_path": "bert-base-cased",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "BertForMaskedLM"
10
+ ],
11
+ "attention_probs_dropout_prob": 0.1,
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": null,
15
+ "chunk_size_feed_forward": 0,
16
+ "classifier_dropout": null,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": null,
24
+ "exponential_decay_length_penalty": null,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "gradient_checkpointing": false,
29
+ "hidden_act": "gelu",
30
+ "hidden_dropout_prob": 0.1,
31
+ "hidden_size": 768,
32
+ "id2label": {
33
+ "0": "O",
34
+ "1": "B-PER",
35
+ "2": "I-PER",
36
+ "3": "B-ORG",
37
+ "4": "I-ORG",
38
+ "5": "B-LOC",
39
+ "6": "I-LOC",
40
+ "7": "B-MISC",
41
+ "8": "I-MISC"
42
+ },
43
+ "initializer_range": 0.02,
44
+ "intermediate_size": 3072,
45
+ "is_decoder": false,
46
+ "is_encoder_decoder": false,
47
+ "label2id": {
48
+ "B-LOC": 5,
49
+ "B-MISC": 7,
50
+ "B-ORG": 3,
51
+ "B-PER": 1,
52
+ "I-LOC": 6,
53
+ "I-MISC": 8,
54
+ "I-ORG": 4,
55
+ "I-PER": 2,
56
+ "O": 0
57
+ },
58
+ "layer_norm_eps": 1e-12,
59
+ "length_penalty": 1.0,
60
+ "max_length": 20,
61
+ "max_position_embeddings": 512,
62
+ "min_length": 0,
63
+ "model_type": "bert",
64
+ "no_repeat_ngram_size": 0,
65
+ "num_attention_heads": 12,
66
+ "num_beam_groups": 1,
67
+ "num_beams": 1,
68
+ "num_hidden_layers": 12,
69
+ "num_return_sequences": 1,
70
+ "output_attentions": false,
71
+ "output_hidden_states": false,
72
+ "output_scores": false,
73
+ "pad_token_id": 0,
74
+ "position_embedding_type": "absolute",
75
+ "prefix": null,
76
+ "problem_type": null,
77
+ "pruned_heads": {},
78
+ "remove_invalid_values": false,
79
+ "repetition_penalty": 1.0,
80
+ "return_dict": true,
81
+ "return_dict_in_generate": false,
82
+ "sep_token_id": null,
83
+ "suppress_tokens": null,
84
+ "task_specific_params": null,
85
+ "temperature": 1.0,
86
+ "tf_legacy_loss": false,
87
+ "tie_encoder_decoder": false,
88
+ "tie_word_embeddings": true,
89
+ "tokenizer_class": null,
90
+ "top_k": 50,
91
+ "top_p": 1.0,
92
+ "torch_dtype": null,
93
+ "torchscript": false,
94
+ "transformers_version": "4.38.2",
95
+ "type_vocab_size": 2,
96
+ "typical_p": 1.0,
97
+ "use_bfloat16": false,
98
+ "use_cache": true,
99
+ "vocab_size": 29000
100
+ },
101
+ "entity_max_length": 8,
102
+ "id2label": {
103
+ "0": "O",
104
+ "1": "LOC",
105
+ "2": "MISC",
106
+ "3": "ORG",
107
+ "4": "PER"
108
+ },
109
+ "id2reduced_id": {
110
+ "0": 0,
111
+ "1": 4,
112
+ "2": 4,
113
+ "3": 3,
114
+ "4": 3,
115
+ "5": 1,
116
+ "6": 1,
117
+ "7": 2,
118
+ "8": 2
119
+ },
120
+ "label2id": {
121
+ "LOC": 1,
122
+ "MISC": 2,
123
+ "O": 0,
124
+ "ORG": 3,
125
+ "PER": 4
126
+ },
127
+ "marker_max_length": 128,
128
+ "max_next_context": null,
129
+ "max_prev_context": null,
130
+ "model_max_length": 256,
131
+ "model_max_length_default": 512,
132
+ "model_type": "span-marker",
133
+ "span_marker_version": "1.5.0",
134
+ "torch_dtype": "float32",
135
+ "trained_with_document_context": false,
136
+ "transformers_version": "4.38.2",
137
+ "vocab_size": 29000
138
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a64516010494bc63f5f42899f8d1128200dd03232340569a1829ea36eac79cf5
3
+ size 433308220
runs/Mar24_09-55-44_21f67bde0ba4/events.out.tfevents.1711275005.21f67bde0ba4.172.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65da633c3e7eeb4aad4b28c04158d58d851b8a2a19f83905dea728417942f9a9
3
+ size 18711
runs/Mar24_09-55-44_21f67bde0ba4/events.out.tfevents.1711276024.21f67bde0ba4.172.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a88d48530e76092127f7bd91e53c473e726da069a648b5cde0a2163ce148c4f
3
+ size 1600
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "100": {
13
+ "content": "[UNK]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "101": {
21
+ "content": "[CLS]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "102": {
29
+ "content": "[SEP]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "103": {
37
+ "content": "[MASK]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "28996": {
45
+ "content": "<start>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "28997": {
53
+ "content": "<end>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ }
60
+ },
61
+ "clean_up_tokenization_spaces": true,
62
+ "cls_token": "[CLS]",
63
+ "do_lower_case": false,
64
+ "entity_max_length": 8,
65
+ "mask_token": "[MASK]",
66
+ "model_max_length": 256,
67
+ "pad_token": "[PAD]",
68
+ "sep_token": "[SEP]",
69
+ "strip_accents": null,
70
+ "tokenize_chinese_chars": true,
71
+ "tokenizer_class": "BertTokenizer",
72
+ "unk_token": "[UNK]"
73
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2534d288a4d65bf6fc820e062e64e9d1a733ef14732adc16fd912ad173cb49ca
3
+ size 4920
vocab.txt ADDED
The diff for this file is too large to render. See raw diff