sepidmnorozy commited on
Commit
39b36cf
1 Parent(s): 035c512

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: sentiment-5Epochs
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # sentiment-5Epochs
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.4947
23
+ - Accuracy: 0.8719
24
+ - F1: 0.8685
25
+ - Precision: 0.8919
26
+ - Recall: 0.8463
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 0.3566 | 1.0 | 7088 | 0.3987 | 0.8627 | 0.8505 | 0.9336 | 0.7810 |
58
+ | 0.3468 | 2.0 | 14176 | 0.3861 | 0.8702 | 0.8638 | 0.9085 | 0.8232 |
59
+ | 0.335 | 3.0 | 21264 | 0.4421 | 0.8759 | 0.8697 | 0.9154 | 0.8283 |
60
+ | 0.3003 | 4.0 | 28352 | 0.4601 | 0.8754 | 0.8696 | 0.9119 | 0.8311 |
61
+ | 0.2995 | 5.0 | 35440 | 0.4947 | 0.8719 | 0.8685 | 0.8919 | 0.8463 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.18.0
67
+ - Pytorch 1.10.0
68
+ - Datasets 2.0.0
69
+ - Tokenizers 0.11.6