resrer-pegasus-x / embedding.py
seonglae's picture
Training in progress, step 500
a9082f6
raw
history blame
1.09 kB
from typing import List, Dict
import torch
from torch import Tensor
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(
~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def encode_hf(input_texts: List[str], model_id: str = 'thenlper/gte-small',
prefix: str = ''):
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModel.from_pretrained(model_id).to('cuda')
input_texts = [prefix + input_text for input_text in input_texts]
# Tokenize the input texts
batch_dict = tokenizer(input_texts, padding=True,
truncation=True, return_tensors='pt').to('cuda')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state,
batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings)
return embeddings