stsb-bert-tiny-lora / train_script.py
tomaarsen's picture
tomaarsen HF staff
Update train_script.py
3b4f75b verified
raw
history blame
3.16 kB
import logging
from datasets import load_dataset, Dataset
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
SentenceTransformerModelCardData,
)
from sentence_transformers.losses import MultipleNegativesRankingLoss
from sentence_transformers.training_args import BatchSamplers
from sentence_transformers.evaluation import NanoBEIREvaluator
from peft import LoraConfig, TaskType
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
)
# 1. Load a model to finetune with 2. (Optional) model card data
model = SentenceTransformer(
"sentence-transformers-testing/stsb-bert-tiny-safetensors",
model_card_data=SentenceTransformerModelCardData(
language="en",
license="apache-2.0",
model_name="stsb-bert-tiny adapter finetuned on GooAQ pairs",
),
)
# Apply a PEFT Adapter
peft_config = LoraConfig(
task_type=TaskType.FEATURE_EXTRACTION,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
model.add_adapter(peft_config, "dense")
# 3. Load a dataset to finetune on
dataset = load_dataset("sentence-transformers/gooaq", split="train")
dataset_dict = dataset.train_test_split(test_size=10_000, seed=12)
train_dataset: Dataset = dataset_dict["train"].select(range(1_000_000))
eval_dataset: Dataset = dataset_dict["test"]
# 4. Define a loss function
loss = MultipleNegativesRankingLoss(model)
# 5. (Optional) Specify training arguments
run_name = "stsb-bert-tiny-base-gooaq-peft"
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir=f"models/{run_name}",
# Optional training parameters:
num_train_epochs=1,
per_device_train_batch_size=1024,
per_device_eval_batch_size=1024,
learning_rate=2e-5,
warmup_ratio=0.1,
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
bf16=True, # Set to True if you have a GPU that supports BF16
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=100,
save_strategy="steps",
save_steps=100,
save_total_limit=2,
logging_steps=25,
logging_first_step=True,
run_name=run_name, # Will be used in W&B if `wandb` is installed
)
# 6. (Optional) Create an evaluator & evaluate the base model
# The full corpus, but only the evaluation queries
dev_evaluator = NanoBEIREvaluator(batch_size=1024)
dev_evaluator(model)
# 7. Create a trainer & train
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
evaluator=dev_evaluator,
)
trainer.train()
# (Optional) Evaluate the trained model on the evaluator after training
dev_evaluator(model)
# 8. Save the trained model
model.save_pretrained(f"models/{run_name}/final")
# 9. (Optional) Push it to the Hugging Face Hub
model.push_to_hub("sentence-transformers-testing/stsb-bert-tiny-lora", private=True)