Update README.md
Browse files
README.md
CHANGED
@@ -1057,6 +1057,11 @@ model-index:
|
|
1057 |
|
1058 |
## piccolo-base-zh
|
1059 |
|
|
|
|
|
|
|
|
|
|
|
1060 |
piccolo is a general text embedding model, powered by General Model Group from SenseTime Research.
|
1061 |
Based on BERT framework, piccolo is trained using a two stage pipeline. On the first stage, we collect and crawl 400 million weakly supervised Chinese text pairs from the Internet,
|
1062 |
and train the model with the pair(text and text pos) softmax contrastive loss.
|
|
|
1057 |
|
1058 |
## piccolo-base-zh
|
1059 |
|
1060 |
+
piccolo是一个通用embedding模型, 由来自商汤科技的通用模型组完成训练。piccolo借鉴了E5以及GTE的训练流程,采用了两阶段的训练方式。
|
1061 |
+
在第一阶段中,我们搜集和爬取了4亿的中文文本对(可视为弱监督文本对数据),并采用二元组的softmax对比学习损失来优化模型。
|
1062 |
+
在第二阶段中,我们从互联网搜集了2000万人工标注的中文文本对(精标数据),并采用带有难负样本的三元组的softmax对比学习损失来帮助模型更好地优化。
|
1063 |
+
目前,我们提供了piccolo-base-zh和piccolo-large-zh两个模型。
|
1064 |
+
|
1065 |
piccolo is a general text embedding model, powered by General Model Group from SenseTime Research.
|
1066 |
Based on BERT framework, piccolo is trained using a two stage pipeline. On the first stage, we collect and crawl 400 million weakly supervised Chinese text pairs from the Internet,
|
1067 |
and train the model with the pair(text and text pos) softmax contrastive loss.
|