sebastiansarasti commited on
Commit
3e56c8e
·
verified ·
1 Parent(s): 63ec851

Push model using huggingface_hub.

Browse files
Files changed (2) hide show
  1. README.md +5 -52
  2. model.safetensors +2 -2
README.md CHANGED
@@ -1,56 +1,9 @@
1
  ---
2
  tags:
3
- - pytorch
 
4
  ---
5
 
6
- # CNN Leukemia Classifier
7
-
8
- ## Model Description
9
-
10
- This Convolutional Neural Network (CNN) model is designed for the classification of leukemia images into one of four classes. It was developed for the Quito AI Day event by [Sebastian Sarasti](https://www.linkedin.com/in/sebastiansarasti/). The model leverages a series of convolutional layers followed by fully connected layers to process and classify images effectively.
11
-
12
- ## Model Architecture
13
-
14
- The model consists of the following layers:
15
-
16
- - Convolutional Layer: 3 input channels, 128 output channels, 3x3 kernel size, stride 1, padding 1
17
- - ReLU Activation
18
- - Max Pooling Layer: 2x2 kernel size
19
- - Dropout Layer: 0.3 dropout rate
20
-
21
- - Convolutional Layer: 128 input channels, 64 output channels, 3x3 kernel size, stride 1, padding 1
22
- - ReLU Activation
23
- - Max Pooling Layer: 2x2 kernel size
24
- - Dropout Layer: 0.3 dropout rate
25
-
26
- - Convolutional Layer: 64 input channels, 32 output channels, 3x3 kernel size, stride 1, padding 1
27
- - ReLU Activation
28
- - Max Pooling Layer: 2x2 kernel size
29
- - Dropout Layer: 0.3 dropout rate
30
-
31
- - Convolutional Layer: 32 input channels, 8 output channels, 3x3 kernel size, stride 1, padding 1
32
- - ReLU Activation
33
- - Max Pooling Layer: 2x2 kernel size
34
- - Dropout Layer: 0.3 dropout rate
35
-
36
- - Flatten Layer
37
-
38
- - Fully Connected Layer: 1568 input features, 512 output features
39
- - ReLU Activation
40
- - Dropout Layer: 0.5 dropout rate
41
-
42
- - Fully Connected Layer: 512 input features, 4 output features
43
-
44
- ## Dataset
45
-
46
- The model was trained on the [Leukemia dataset from Kaggle](https://www.kaggle.com/datasets/mehradaria/leukemia), which consists of images labeled into different leukemia types.
47
-
48
- ## Usage
49
-
50
- To use this model, you can load it from the Hugging Face Hub as follows:
51
-
52
- ```python
53
- from transformers import AutoModel
54
-
55
- model = AutoModel.from_pretrained("path/to/your/model")
56
-
 
1
  ---
2
  tags:
3
+ - model_hub_mixin
4
+ - pytorch_model_hub_mixin
5
  ---
6
 
7
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
+ - Library: [More Information Needed]
9
+ - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f2f79a26e6ce6a2e79b731cf2dd072883f438d14f4d839a240d77e9bb097e591
3
- size 3615128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9e0eb0910ebc647e6c03b1219f1f54a2753c10c0b0df21553305e6220b40c98
3
+ size 367565872