sebastian-hofstaetter
commited on
Commit
·
c9bcb62
1
Parent(s):
adb16de
Add model, tokenize, & initial model card
Browse files- README.md +22 -0
- config.json +22 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Margin-MSE trained Bert_Dot (or BERT Dense Retrieval)
|
2 |
+
|
3 |
+
We provide a retrieval trained (with Margin-MSE using a 3 teacher Bert_Cat Ensemble on MSMARCO-Passage) DistilBert-based instance here.
|
4 |
+
|
5 |
+
This instance can be used to **re-rank a candidate set** or **directly for a vector index based dense retrieval**. The architecure is a 6-layer DistilBERT, without architecture additions or modifications (we only change the weights during training) - to receive a query/passage representation we pool the CLS vector.
|
6 |
+
|
7 |
+
If you want to know more about our simple, yet effective knowledge distillation method for efficient information retrieval models for a variety of student architectures that is used for this model instance check out our paper: https://arxiv.org/abs/2010.02666 🎉
|
8 |
+
|
9 |
+
For more information and a minimal usage example, please visit: https://github.com/sebastian-hofstaetter/neural-ranking-kd
|
10 |
+
|
11 |
+
If you use our model checkpoint please cite our work as:
|
12 |
+
|
13 |
+
```
|
14 |
+
@misc{hofstaetter2020_crossarchitecture_kd,
|
15 |
+
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
|
16 |
+
author={Sebastian Hofst{\"a}tter and Sophia Althammer and Michael Schr{\"o}der and Mete Sertkan and Allan Hanbury},
|
17 |
+
year={2020},
|
18 |
+
eprint={2010.02666},
|
19 |
+
archivePrefix={arXiv},
|
20 |
+
primaryClass={cs.IR}
|
21 |
+
}
|
22 |
+
```
|
config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"vocab_size": 30522
|
22 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80e6f999f979317352a8312f58794cf9ba7c39e5b22203ca2956fdc1ac7cd83b
|
3 |
+
size 265472230
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-uncased"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|