sebastian-hofstaetter commited on
Commit
c9bcb62
·
1 Parent(s): adb16de

Add model, tokenize, & initial model card

Browse files
README.md ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Margin-MSE trained Bert_Dot (or BERT Dense Retrieval)
2
+
3
+ We provide a retrieval trained (with Margin-MSE using a 3 teacher Bert_Cat Ensemble on MSMARCO-Passage) DistilBert-based instance here.
4
+
5
+ This instance can be used to **re-rank a candidate set** or **directly for a vector index based dense retrieval**. The architecure is a 6-layer DistilBERT, without architecture additions or modifications (we only change the weights during training) - to receive a query/passage representation we pool the CLS vector.
6
+
7
+ If you want to know more about our simple, yet effective knowledge distillation method for efficient information retrieval models for a variety of student architectures that is used for this model instance check out our paper: https://arxiv.org/abs/2010.02666 🎉
8
+
9
+ For more information and a minimal usage example, please visit: https://github.com/sebastian-hofstaetter/neural-ranking-kd
10
+
11
+ If you use our model checkpoint please cite our work as:
12
+
13
+ ```
14
+ @misc{hofstaetter2020_crossarchitecture_kd,
15
+ title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
16
+ author={Sebastian Hofst{\"a}tter and Sophia Althammer and Michael Schr{\"o}der and Mete Sertkan and Allan Hanbury},
17
+ year={2020},
18
+ eprint={2010.02666},
19
+ archivePrefix={arXiv},
20
+ primaryClass={cs.IR}
21
+ }
22
+ ```
config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "vocab_size": 30522
22
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80e6f999f979317352a8312f58794cf9ba7c39e5b22203ca2956fdc1ac7cd83b
3
+ size 265472230
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-uncased"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff