Updated checkpoint
Browse files- README.md +173 -63
- adapter_model.safetensors +1 -1
- optimizer.pt +1 -1
- rng_state.pth +1 -1
- scheduler.pt +1 -1
- trainer_state.json +327 -3
README.md
CHANGED
@@ -1,94 +1,204 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
4 |
-
license: apache-2.0
|
5 |
-
datasets:
|
6 |
-
- liuhaotian/LLaVA-Instruct-150K
|
7 |
---
|
8 |
|
9 |
# Model Card for Model ID
|
10 |
|
11 |
-
|
12 |
|
13 |
-
Is text really all you need? Probably not, but the least we can do is try. This repo contains a QLoRA fine-tune of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the original [Llava-150K-Instruct](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) dataset; however, each image is encoded as a base64 representation. With enough data, can a LLM learn to "see" just from text? Early results say absolutely not, but I am committed to burning my GPU credits regardless of how bad the result.
|
14 |
|
15 |
-
I do believe in the future we will see a "simplification" of architectures designed to work for multiple modalities. LLaVA, for example, combines a vision encoder with a pre-trained LLM. Perhaps models of the future will have a joint-representation for both images and text, and not have to rely on splicing 2 models together. For example, perhaps [Token-Free Models](https://arxiv.org/html/2401.13660v1) could be trained on multi-modal byte representations of inputs. Of course, this would be extremely computationally expensive compared to modern vision models, but maybe 10-20 years down the line it's not that big of a deal?
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
import torch
|
21 |
-
from peft import PeftModel
|
22 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
23 |
|
24 |
-
|
25 |
-
ADAPTER_MODEL = "seanmor5/mistral-7b-instruct-vision-64-qlora"
|
26 |
-
MAX_SEQ_LEN = 2048
|
27 |
|
28 |
-
device = "cuda"
|
29 |
|
30 |
-
bnb_config = BitsAndBytesConfig(
|
31 |
-
load_in_4bit=True,
|
32 |
-
bnb_4bit_use_double_quant=True,
|
33 |
-
bnb_4bit_quant_type="nf4",
|
34 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
35 |
-
)
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
tokenizer.pad_token = tokenizer.eos_token
|
42 |
-
```
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
from PIL import Image
|
50 |
|
51 |
-
|
52 |
-
TARGET_QUALITY = 5
|
53 |
|
54 |
-
|
55 |
-
img = Image.open(path)
|
56 |
-
img = img.resize(TARGET_SIZE, Image.ANTIALIAS)
|
57 |
-
buf = BytesIO()
|
58 |
-
img.save(buf, optimize=True, quality=5, format="JPEG")
|
59 |
-
return f"<image>{base64.b64encode(buf.getvalue()).decode()}</image>"
|
60 |
-
```
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
def replace_image(seq, img):
|
66 |
-
return seq.replace("<image>", downsample(img))
|
67 |
|
68 |
-
|
69 |
-
"<image>\nWhat is the dog doing in this photo?"
|
70 |
-
)
|
71 |
-
prompt = replace_image(prompt, "dog.jpg")
|
72 |
-
print(prompt)
|
73 |
|
74 |
-
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
model.to(device)
|
80 |
|
81 |
-
|
82 |
-
input_ids=model_inputs, max_new_tokens=1000, do_sample=True
|
83 |
-
)
|
84 |
-
decoded = tokenizer.batch_decode(generated_ids)
|
85 |
-
print(decoded[0])
|
86 |
-
```
|
87 |
|
88 |
-
|
89 |
|
|
|
90 |
|
91 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
-
|
94 |
-
- **License:** Apache 2.0
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
+
## Model Details
|
13 |
|
14 |
+
### Model Description
|
|
|
|
|
|
|
15 |
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
|
|
|
|
17 |
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
+
### Model Sources [optional]
|
|
|
|
|
29 |
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
|
|
35 |
|
36 |
+
## Uses
|
|
|
37 |
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
### Direct Use
|
41 |
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
|
|
|
|
43 |
|
44 |
+
[More Information Needed]
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
### Downstream Use [optional]
|
47 |
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
|
50 |
+
[More Information Needed]
|
|
|
51 |
|
52 |
+
### Out-of-Scope Use
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
|
56 |
+
[More Information Needed]
|
57 |
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
|
204 |
+
- PEFT 0.8.2
|
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 609389712
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75fd9d486b46d64b848cc86c11f7c4b13bef4df29a52e38ef2ddcf662cae5afa
|
3 |
size 609389712
|
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43127132
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f9d3909cf1844576d913e65e12ea6c9803b84d60d503e1c10e8644665ef28b3
|
3 |
size 43127132
|
rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14244
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d2c86a82ac0544796339d1ffad39305810835aadba072c67e2a4057f9b2590a
|
3 |
size 14244
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1064
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76d56d87344e9a2362ceb0c3f55bb4d805fbfc4b13b2b61dd202aac4f9d1849f
|
3 |
size 1064
|
trainer_state.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch": 0.
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
@@ -103,6 +103,330 @@
|
|
103 |
"learning_rate": 2.0817550505050505e-05,
|
104 |
"loss": 3.6076,
|
105 |
"step": 800
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
}
|
107 |
],
|
108 |
"logging_steps": 50,
|
@@ -110,7 +434,7 @@
|
|
110 |
"num_input_tokens_seen": 0,
|
111 |
"num_train_epochs": 1,
|
112 |
"save_steps": 100,
|
113 |
-
"total_flos":
|
114 |
"train_batch_size": 8,
|
115 |
"trial_name": null,
|
116 |
"trial_params": null
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.7356805044666316,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 3500,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
|
|
103 |
"learning_rate": 2.0817550505050505e-05,
|
104 |
"loss": 3.6076,
|
105 |
"step": 800
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.18,
|
109 |
+
"learning_rate": 2.055450336700337e-05,
|
110 |
+
"loss": 3.5806,
|
111 |
+
"step": 850
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.19,
|
115 |
+
"learning_rate": 2.0291456228956228e-05,
|
116 |
+
"loss": 3.5683,
|
117 |
+
"step": 900
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.2,
|
121 |
+
"learning_rate": 2.0028409090909093e-05,
|
122 |
+
"loss": 3.5725,
|
123 |
+
"step": 950
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.21,
|
127 |
+
"learning_rate": 1.9765361952861954e-05,
|
128 |
+
"loss": 3.57,
|
129 |
+
"step": 1000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.22,
|
133 |
+
"learning_rate": 1.9502314814814815e-05,
|
134 |
+
"loss": 3.5478,
|
135 |
+
"step": 1050
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.23,
|
139 |
+
"learning_rate": 1.9239267676767677e-05,
|
140 |
+
"loss": 3.5495,
|
141 |
+
"step": 1100
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.24,
|
145 |
+
"learning_rate": 1.897622053872054e-05,
|
146 |
+
"loss": 3.5462,
|
147 |
+
"step": 1150
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.25,
|
151 |
+
"learning_rate": 1.87131734006734e-05,
|
152 |
+
"loss": 3.5513,
|
153 |
+
"step": 1200
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.26,
|
157 |
+
"learning_rate": 1.8450126262626264e-05,
|
158 |
+
"loss": 3.5378,
|
159 |
+
"step": 1250
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.27,
|
163 |
+
"learning_rate": 1.8187079124579126e-05,
|
164 |
+
"loss": 3.5639,
|
165 |
+
"step": 1300
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.28,
|
169 |
+
"learning_rate": 1.7924031986531987e-05,
|
170 |
+
"loss": 3.5629,
|
171 |
+
"step": 1350
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.29,
|
175 |
+
"learning_rate": 1.766098484848485e-05,
|
176 |
+
"loss": 3.5553,
|
177 |
+
"step": 1400
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.3,
|
181 |
+
"learning_rate": 1.7397937710437713e-05,
|
182 |
+
"loss": 3.504,
|
183 |
+
"step": 1450
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.32,
|
187 |
+
"learning_rate": 1.7134890572390575e-05,
|
188 |
+
"loss": 3.5303,
|
189 |
+
"step": 1500
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.33,
|
193 |
+
"learning_rate": 1.6871843434343436e-05,
|
194 |
+
"loss": 3.5099,
|
195 |
+
"step": 1550
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.34,
|
199 |
+
"learning_rate": 1.6608796296296297e-05,
|
200 |
+
"loss": 3.5221,
|
201 |
+
"step": 1600
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.35,
|
205 |
+
"learning_rate": 1.634574915824916e-05,
|
206 |
+
"loss": 3.5422,
|
207 |
+
"step": 1650
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.36,
|
211 |
+
"learning_rate": 1.608270202020202e-05,
|
212 |
+
"loss": 3.5353,
|
213 |
+
"step": 1700
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.37,
|
217 |
+
"learning_rate": 1.581965488215488e-05,
|
218 |
+
"loss": 3.5026,
|
219 |
+
"step": 1750
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.38,
|
223 |
+
"learning_rate": 1.5556607744107746e-05,
|
224 |
+
"loss": 3.5182,
|
225 |
+
"step": 1800
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.39,
|
229 |
+
"learning_rate": 1.5293560606060604e-05,
|
230 |
+
"loss": 3.4875,
|
231 |
+
"step": 1850
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.4,
|
235 |
+
"learning_rate": 1.503051346801347e-05,
|
236 |
+
"loss": 3.4945,
|
237 |
+
"step": 1900
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.41,
|
241 |
+
"learning_rate": 1.476746632996633e-05,
|
242 |
+
"loss": 3.4714,
|
243 |
+
"step": 1950
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.42,
|
247 |
+
"learning_rate": 1.4504419191919192e-05,
|
248 |
+
"loss": 3.5158,
|
249 |
+
"step": 2000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.43,
|
253 |
+
"learning_rate": 1.4241372053872053e-05,
|
254 |
+
"loss": 3.5165,
|
255 |
+
"step": 2050
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.44,
|
259 |
+
"learning_rate": 1.3978324915824916e-05,
|
260 |
+
"loss": 3.5131,
|
261 |
+
"step": 2100
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.45,
|
265 |
+
"learning_rate": 1.371527777777778e-05,
|
266 |
+
"loss": 3.5227,
|
267 |
+
"step": 2150
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.46,
|
271 |
+
"learning_rate": 1.345223063973064e-05,
|
272 |
+
"loss": 3.5369,
|
273 |
+
"step": 2200
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.47,
|
277 |
+
"learning_rate": 1.3189183501683502e-05,
|
278 |
+
"loss": 3.5149,
|
279 |
+
"step": 2250
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.48,
|
283 |
+
"learning_rate": 1.2926136363636365e-05,
|
284 |
+
"loss": 3.4936,
|
285 |
+
"step": 2300
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.49,
|
289 |
+
"learning_rate": 1.2663089225589225e-05,
|
290 |
+
"loss": 3.4927,
|
291 |
+
"step": 2350
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.5,
|
295 |
+
"learning_rate": 1.2400042087542088e-05,
|
296 |
+
"loss": 3.5001,
|
297 |
+
"step": 2400
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.51,
|
301 |
+
"learning_rate": 1.213699494949495e-05,
|
302 |
+
"loss": 3.5218,
|
303 |
+
"step": 2450
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.53,
|
307 |
+
"learning_rate": 1.1873947811447813e-05,
|
308 |
+
"loss": 3.4894,
|
309 |
+
"step": 2500
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.54,
|
313 |
+
"learning_rate": 1.1610900673400674e-05,
|
314 |
+
"loss": 3.4919,
|
315 |
+
"step": 2550
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.55,
|
319 |
+
"learning_rate": 1.1347853535353537e-05,
|
320 |
+
"loss": 3.4681,
|
321 |
+
"step": 2600
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.56,
|
325 |
+
"learning_rate": 1.1084806397306398e-05,
|
326 |
+
"loss": 3.4746,
|
327 |
+
"step": 2650
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.57,
|
331 |
+
"learning_rate": 1.082175925925926e-05,
|
332 |
+
"loss": 3.4908,
|
333 |
+
"step": 2700
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.58,
|
337 |
+
"learning_rate": 1.0558712121212121e-05,
|
338 |
+
"loss": 3.5006,
|
339 |
+
"step": 2750
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.59,
|
343 |
+
"learning_rate": 1.0295664983164983e-05,
|
344 |
+
"loss": 3.4835,
|
345 |
+
"step": 2800
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.6,
|
349 |
+
"learning_rate": 1.0032617845117846e-05,
|
350 |
+
"loss": 3.4842,
|
351 |
+
"step": 2850
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.61,
|
355 |
+
"learning_rate": 9.769570707070707e-06,
|
356 |
+
"loss": 3.4779,
|
357 |
+
"step": 2900
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.62,
|
361 |
+
"learning_rate": 9.506523569023568e-06,
|
362 |
+
"loss": 3.4768,
|
363 |
+
"step": 2950
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.63,
|
367 |
+
"learning_rate": 9.243476430976432e-06,
|
368 |
+
"loss": 3.4755,
|
369 |
+
"step": 3000
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.64,
|
373 |
+
"learning_rate": 8.980429292929293e-06,
|
374 |
+
"loss": 3.4849,
|
375 |
+
"step": 3050
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.65,
|
379 |
+
"learning_rate": 8.717382154882154e-06,
|
380 |
+
"loss": 3.481,
|
381 |
+
"step": 3100
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.66,
|
385 |
+
"learning_rate": 8.454335016835017e-06,
|
386 |
+
"loss": 3.4918,
|
387 |
+
"step": 3150
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.67,
|
391 |
+
"learning_rate": 8.191287878787879e-06,
|
392 |
+
"loss": 3.4624,
|
393 |
+
"step": 3200
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.68,
|
397 |
+
"learning_rate": 7.928240740740742e-06,
|
398 |
+
"loss": 3.4826,
|
399 |
+
"step": 3250
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.69,
|
403 |
+
"learning_rate": 7.665193602693603e-06,
|
404 |
+
"loss": 3.4719,
|
405 |
+
"step": 3300
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.7,
|
409 |
+
"learning_rate": 7.402146464646465e-06,
|
410 |
+
"loss": 3.4858,
|
411 |
+
"step": 3350
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.71,
|
415 |
+
"learning_rate": 7.139099326599327e-06,
|
416 |
+
"loss": 3.4616,
|
417 |
+
"step": 3400
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.73,
|
421 |
+
"learning_rate": 6.876052188552188e-06,
|
422 |
+
"loss": 3.4697,
|
423 |
+
"step": 3450
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.74,
|
427 |
+
"learning_rate": 6.613005050505051e-06,
|
428 |
+
"loss": 3.4486,
|
429 |
+
"step": 3500
|
430 |
}
|
431 |
],
|
432 |
"logging_steps": 50,
|
|
|
434 |
"num_input_tokens_seen": 0,
|
435 |
"num_train_epochs": 1,
|
436 |
"save_steps": 100,
|
437 |
+
"total_flos": 8.593871062478193e+18,
|
438 |
"train_batch_size": 8,
|
439 |
"trial_name": null,
|
440 |
"trial_params": null
|