Upload run_translation.py
Browse files- run_translation.py +696 -0
run_translation.py
ADDED
@@ -0,0 +1,696 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for sequence to sequence.
|
18 |
+
"""
|
19 |
+
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
20 |
+
|
21 |
+
import logging
|
22 |
+
import os
|
23 |
+
import sys
|
24 |
+
from dataclasses import dataclass, field
|
25 |
+
from typing import Optional
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
import evaluate
|
29 |
+
import numpy as np
|
30 |
+
from datasets import load_dataset
|
31 |
+
|
32 |
+
import transformers
|
33 |
+
from transformers import (
|
34 |
+
AutoConfig,
|
35 |
+
AutoModelForSeq2SeqLM,
|
36 |
+
AutoTokenizer,
|
37 |
+
DataCollatorForSeq2Seq,
|
38 |
+
HfArgumentParser,
|
39 |
+
M2M100Tokenizer,
|
40 |
+
MBart50Tokenizer,
|
41 |
+
MBart50TokenizerFast,
|
42 |
+
MBartTokenizer,
|
43 |
+
MBartTokenizerFast,
|
44 |
+
Seq2SeqTrainer,
|
45 |
+
Seq2SeqTrainingArguments,
|
46 |
+
default_data_collator,
|
47 |
+
set_seed,
|
48 |
+
)
|
49 |
+
from transformers.trainer_utils import get_last_checkpoint
|
50 |
+
from transformers.utils import check_min_version, send_example_telemetry
|
51 |
+
from transformers.utils.versions import require_version
|
52 |
+
|
53 |
+
|
54 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
55 |
+
check_min_version("4.42.0.dev0")
|
56 |
+
|
57 |
+
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
|
58 |
+
|
59 |
+
logger = logging.getLogger(__name__)
|
60 |
+
|
61 |
+
# A list of all multilingual tokenizer which require src_lang and tgt_lang attributes.
|
62 |
+
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class ModelArguments:
|
67 |
+
"""
|
68 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
69 |
+
"""
|
70 |
+
|
71 |
+
model_name_or_path: str = field(
|
72 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
73 |
+
)
|
74 |
+
config_name: Optional[str] = field(
|
75 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
76 |
+
)
|
77 |
+
tokenizer_name: Optional[str] = field(
|
78 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
79 |
+
)
|
80 |
+
cache_dir: Optional[str] = field(
|
81 |
+
default=None,
|
82 |
+
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
83 |
+
)
|
84 |
+
use_fast_tokenizer: bool = field(
|
85 |
+
default=True,
|
86 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
87 |
+
)
|
88 |
+
model_revision: str = field(
|
89 |
+
default="main",
|
90 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
91 |
+
)
|
92 |
+
token: str = field(
|
93 |
+
default=None,
|
94 |
+
metadata={
|
95 |
+
"help": (
|
96 |
+
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
97 |
+
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
98 |
+
)
|
99 |
+
},
|
100 |
+
)
|
101 |
+
trust_remote_code: bool = field(
|
102 |
+
default=False,
|
103 |
+
metadata={
|
104 |
+
"help": (
|
105 |
+
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
106 |
+
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
107 |
+
"execute code present on the Hub on your local machine."
|
108 |
+
)
|
109 |
+
},
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
@dataclass
|
114 |
+
class DataTrainingArguments:
|
115 |
+
"""
|
116 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
117 |
+
"""
|
118 |
+
|
119 |
+
source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
|
120 |
+
target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})
|
121 |
+
|
122 |
+
dataset_name: Optional[str] = field(
|
123 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
124 |
+
)
|
125 |
+
dataset_config_name: Optional[str] = field(
|
126 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
127 |
+
)
|
128 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."})
|
129 |
+
validation_file: Optional[str] = field(
|
130 |
+
default=None,
|
131 |
+
metadata={
|
132 |
+
"help": "An optional input evaluation data file to evaluate the metrics (sacrebleu) on a jsonlines file."
|
133 |
+
},
|
134 |
+
)
|
135 |
+
test_file: Optional[str] = field(
|
136 |
+
default=None,
|
137 |
+
metadata={"help": "An optional input test data file to evaluate the metrics (sacrebleu) on a jsonlines file."},
|
138 |
+
)
|
139 |
+
overwrite_cache: bool = field(
|
140 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
141 |
+
)
|
142 |
+
preprocessing_num_workers: Optional[int] = field(
|
143 |
+
default=None,
|
144 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
145 |
+
)
|
146 |
+
max_source_length: Optional[int] = field(
|
147 |
+
default=128,
|
148 |
+
metadata={
|
149 |
+
"help": (
|
150 |
+
"The maximum total input sequence length after tokenization. Sequences longer "
|
151 |
+
"than this will be truncated, sequences shorter will be padded."
|
152 |
+
)
|
153 |
+
},
|
154 |
+
)
|
155 |
+
max_target_length: Optional[int] = field(
|
156 |
+
default=128,
|
157 |
+
metadata={
|
158 |
+
"help": (
|
159 |
+
"The maximum total sequence length for target text after tokenization. Sequences longer "
|
160 |
+
"than this will be truncated, sequences shorter will be padded."
|
161 |
+
)
|
162 |
+
},
|
163 |
+
)
|
164 |
+
val_max_target_length: Optional[int] = field(
|
165 |
+
default=None,
|
166 |
+
metadata={
|
167 |
+
"help": (
|
168 |
+
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
169 |
+
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
|
170 |
+
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
|
171 |
+
"during ``evaluate`` and ``predict``."
|
172 |
+
)
|
173 |
+
},
|
174 |
+
)
|
175 |
+
pad_to_max_length: bool = field(
|
176 |
+
default=False,
|
177 |
+
metadata={
|
178 |
+
"help": (
|
179 |
+
"Whether to pad all samples to model maximum sentence length. "
|
180 |
+
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
|
181 |
+
"efficient on GPU but very bad for TPU."
|
182 |
+
)
|
183 |
+
},
|
184 |
+
)
|
185 |
+
max_train_samples: Optional[int] = field(
|
186 |
+
default=None,
|
187 |
+
metadata={
|
188 |
+
"help": (
|
189 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
190 |
+
"value if set."
|
191 |
+
)
|
192 |
+
},
|
193 |
+
)
|
194 |
+
max_eval_samples: Optional[int] = field(
|
195 |
+
default=None,
|
196 |
+
metadata={
|
197 |
+
"help": (
|
198 |
+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
199 |
+
"value if set."
|
200 |
+
)
|
201 |
+
},
|
202 |
+
)
|
203 |
+
max_predict_samples: Optional[int] = field(
|
204 |
+
default=None,
|
205 |
+
metadata={
|
206 |
+
"help": (
|
207 |
+
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
208 |
+
"value if set."
|
209 |
+
)
|
210 |
+
},
|
211 |
+
)
|
212 |
+
num_beams: Optional[int] = field(
|
213 |
+
default=1,
|
214 |
+
metadata={
|
215 |
+
"help": (
|
216 |
+
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
|
217 |
+
"which is used during ``evaluate`` and ``predict``."
|
218 |
+
)
|
219 |
+
},
|
220 |
+
)
|
221 |
+
ignore_pad_token_for_loss: bool = field(
|
222 |
+
default=True,
|
223 |
+
metadata={
|
224 |
+
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
225 |
+
},
|
226 |
+
)
|
227 |
+
source_prefix: Optional[str] = field(
|
228 |
+
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
|
229 |
+
)
|
230 |
+
forced_bos_token: Optional[str] = field(
|
231 |
+
default=None,
|
232 |
+
metadata={
|
233 |
+
"help": (
|
234 |
+
"The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for"
|
235 |
+
" multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to"
|
236 |
+
" be the target language token.(Usually it is the target language token)"
|
237 |
+
)
|
238 |
+
},
|
239 |
+
)
|
240 |
+
|
241 |
+
def __post_init__(self):
|
242 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
243 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
244 |
+
elif self.source_lang is None or self.target_lang is None:
|
245 |
+
raise ValueError("Need to specify the source language and the target language.")
|
246 |
+
|
247 |
+
# accepting both json and jsonl file extensions, as
|
248 |
+
# many jsonlines files actually have a .json extension
|
249 |
+
valid_extensions = ["json", "jsonl"]
|
250 |
+
|
251 |
+
if self.train_file is not None:
|
252 |
+
extension = self.train_file.split(".")[-1]
|
253 |
+
assert extension in valid_extensions, "`train_file` should be a jsonlines file."
|
254 |
+
if self.validation_file is not None:
|
255 |
+
extension = self.validation_file.split(".")[-1]
|
256 |
+
assert extension in valid_extensions, "`validation_file` should be a jsonlines file."
|
257 |
+
if self.val_max_target_length is None:
|
258 |
+
self.val_max_target_length = self.max_target_length
|
259 |
+
|
260 |
+
|
261 |
+
def main():
|
262 |
+
# See all possible arguments in src/transformers/training_args.py
|
263 |
+
# or by passing the --help flag to this script.
|
264 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
265 |
+
|
266 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
267 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
268 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
269 |
+
# let's parse it to get our arguments.
|
270 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
271 |
+
else:
|
272 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
273 |
+
|
274 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
275 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
276 |
+
send_example_telemetry("run_translation", model_args, data_args)
|
277 |
+
|
278 |
+
# Setup logging
|
279 |
+
logging.basicConfig(
|
280 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
281 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
282 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
283 |
+
)
|
284 |
+
|
285 |
+
if training_args.should_log:
|
286 |
+
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
287 |
+
transformers.utils.logging.set_verbosity_info()
|
288 |
+
|
289 |
+
log_level = training_args.get_process_log_level()
|
290 |
+
logger.setLevel(log_level)
|
291 |
+
datasets.utils.logging.set_verbosity(log_level)
|
292 |
+
transformers.utils.logging.set_verbosity(log_level)
|
293 |
+
transformers.utils.logging.enable_default_handler()
|
294 |
+
transformers.utils.logging.enable_explicit_format()
|
295 |
+
|
296 |
+
# Log on each process the small summary:
|
297 |
+
logger.warning(
|
298 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
299 |
+
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
300 |
+
)
|
301 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
302 |
+
|
303 |
+
if data_args.source_prefix is None and model_args.model_name_or_path in [
|
304 |
+
"google-t5/t5-small",
|
305 |
+
"google-t5/t5-base",
|
306 |
+
"google-t5/t5-large",
|
307 |
+
"google-t5/t5-3b",
|
308 |
+
"google-t5/t5-11b",
|
309 |
+
]:
|
310 |
+
logger.warning(
|
311 |
+
"You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
|
312 |
+
"`--source_prefix 'translate English to German: ' `"
|
313 |
+
)
|
314 |
+
|
315 |
+
# Detecting last checkpoint.
|
316 |
+
last_checkpoint = None
|
317 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
318 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
319 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
320 |
+
raise ValueError(
|
321 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
322 |
+
"Use --overwrite_output_dir to overcome."
|
323 |
+
)
|
324 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
325 |
+
logger.info(
|
326 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
327 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
328 |
+
)
|
329 |
+
|
330 |
+
# Set seed before initializing model.
|
331 |
+
set_seed(training_args.seed)
|
332 |
+
|
333 |
+
# Get the datasets: you can either provide your own JSON training and evaluation files (see below)
|
334 |
+
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
335 |
+
# (the dataset will be downloaded automatically from the datasets Hub).
|
336 |
+
#
|
337 |
+
# For translation, only JSON files are supported, with one field named "translation" containing two keys for the
|
338 |
+
# source and target languages (unless you adapt what follows).
|
339 |
+
#
|
340 |
+
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
341 |
+
# download the dataset.
|
342 |
+
if data_args.dataset_name is not None:
|
343 |
+
# Downloading and loading a dataset from the hub.
|
344 |
+
raw_datasets = load_dataset(
|
345 |
+
data_args.dataset_name,
|
346 |
+
data_args.dataset_config_name,
|
347 |
+
cache_dir=model_args.cache_dir,
|
348 |
+
token=model_args.token,
|
349 |
+
)
|
350 |
+
else:
|
351 |
+
data_files = {}
|
352 |
+
if data_args.train_file is not None:
|
353 |
+
data_files["train"] = data_args.train_file
|
354 |
+
extension = data_args.train_file.split(".")[-1]
|
355 |
+
if data_args.validation_file is not None:
|
356 |
+
data_files["validation"] = data_args.validation_file
|
357 |
+
extension = data_args.validation_file.split(".")[-1]
|
358 |
+
if data_args.test_file is not None:
|
359 |
+
data_files["test"] = data_args.test_file
|
360 |
+
extension = data_args.test_file.split(".")[-1]
|
361 |
+
if extension == "jsonl":
|
362 |
+
builder_name = "json" # the "json" builder reads both .json and .jsonl files
|
363 |
+
else:
|
364 |
+
builder_name = extension # e.g. "parquet"
|
365 |
+
raw_datasets = load_dataset(
|
366 |
+
builder_name,
|
367 |
+
data_files=data_files,
|
368 |
+
cache_dir=model_args.cache_dir,
|
369 |
+
token=model_args.token,
|
370 |
+
)
|
371 |
+
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
372 |
+
# https://huggingface.co/docs/datasets/loading.
|
373 |
+
|
374 |
+
# Load pretrained model and tokenizer
|
375 |
+
#
|
376 |
+
# Distributed training:
|
377 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
378 |
+
# download model & vocab.
|
379 |
+
config = AutoConfig.from_pretrained(
|
380 |
+
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
381 |
+
cache_dir=model_args.cache_dir,
|
382 |
+
revision=model_args.model_revision,
|
383 |
+
token=model_args.token,
|
384 |
+
trust_remote_code=model_args.trust_remote_code,
|
385 |
+
)
|
386 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
387 |
+
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
388 |
+
cache_dir=model_args.cache_dir,
|
389 |
+
use_fast=model_args.use_fast_tokenizer,
|
390 |
+
revision=model_args.model_revision,
|
391 |
+
token=model_args.token,
|
392 |
+
trust_remote_code=model_args.trust_remote_code,
|
393 |
+
)
|
394 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
395 |
+
model_args.model_name_or_path,
|
396 |
+
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
397 |
+
config=config,
|
398 |
+
cache_dir=model_args.cache_dir,
|
399 |
+
revision=model_args.model_revision,
|
400 |
+
token=model_args.token,
|
401 |
+
trust_remote_code=model_args.trust_remote_code,
|
402 |
+
)
|
403 |
+
|
404 |
+
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
405 |
+
# on a small vocab and want a smaller embedding size, remove this test.
|
406 |
+
embedding_size = model.get_input_embeddings().weight.shape[0]
|
407 |
+
if len(tokenizer) > embedding_size:
|
408 |
+
model.resize_token_embeddings(len(tokenizer))
|
409 |
+
|
410 |
+
# Set decoder_start_token_id
|
411 |
+
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
|
412 |
+
if isinstance(tokenizer, MBartTokenizer):
|
413 |
+
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
|
414 |
+
else:
|
415 |
+
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)
|
416 |
+
|
417 |
+
if model.config.decoder_start_token_id is None:
|
418 |
+
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
419 |
+
|
420 |
+
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
421 |
+
|
422 |
+
# Preprocessing the datasets.
|
423 |
+
# We need to tokenize inputs and targets.
|
424 |
+
if training_args.do_train:
|
425 |
+
column_names = raw_datasets["train"].column_names
|
426 |
+
elif training_args.do_eval:
|
427 |
+
column_names = raw_datasets["validation"].column_names
|
428 |
+
elif training_args.do_predict:
|
429 |
+
column_names = raw_datasets["test"].column_names
|
430 |
+
else:
|
431 |
+
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
|
432 |
+
return
|
433 |
+
|
434 |
+
# For translation we set the codes of our source and target languages (only useful for mBART, the others will
|
435 |
+
# ignore those attributes).
|
436 |
+
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
|
437 |
+
assert data_args.target_lang is not None and data_args.source_lang is not None, (
|
438 |
+
f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
|
439 |
+
"--target_lang arguments."
|
440 |
+
)
|
441 |
+
|
442 |
+
tokenizer.src_lang = data_args.source_lang
|
443 |
+
tokenizer.tgt_lang = data_args.target_lang
|
444 |
+
|
445 |
+
# For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
|
446 |
+
# as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
|
447 |
+
forced_bos_token_id = (
|
448 |
+
tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
|
449 |
+
)
|
450 |
+
model.config.forced_bos_token_id = forced_bos_token_id
|
451 |
+
|
452 |
+
# Get the language codes for input/target.
|
453 |
+
source_lang = data_args.source_lang.split("_")[0]
|
454 |
+
target_lang = data_args.target_lang.split("_")[0]
|
455 |
+
|
456 |
+
# Check the whether the source target length fits in the model, if it has absolute positional embeddings
|
457 |
+
if (
|
458 |
+
hasattr(model.config, "max_position_embeddings")
|
459 |
+
and not hasattr(model.config, "relative_attention_max_distance")
|
460 |
+
and model.config.max_position_embeddings < data_args.max_source_length
|
461 |
+
):
|
462 |
+
raise ValueError(
|
463 |
+
f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
|
464 |
+
f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
|
465 |
+
f" `--max_source_length` to {model.config.max_position_embeddings} or using a model with larger position "
|
466 |
+
"embeddings"
|
467 |
+
)
|
468 |
+
|
469 |
+
# Temporarily set max_target_length for training.
|
470 |
+
max_target_length = data_args.max_target_length
|
471 |
+
padding = "max_length" if data_args.pad_to_max_length else False
|
472 |
+
|
473 |
+
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
|
474 |
+
logger.warning(
|
475 |
+
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
|
476 |
+
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
|
477 |
+
)
|
478 |
+
|
479 |
+
def preprocess_function(examples):
|
480 |
+
inputs = [ex[source_lang] for ex in examples["translation"]]
|
481 |
+
targets = [ex[target_lang] for ex in examples["translation"]]
|
482 |
+
inputs = [prefix + inp for inp in inputs]
|
483 |
+
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
|
484 |
+
|
485 |
+
# Tokenize targets with the `text_target` keyword argument
|
486 |
+
labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
|
487 |
+
|
488 |
+
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
|
489 |
+
# padding in the loss.
|
490 |
+
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
|
491 |
+
labels["input_ids"] = [
|
492 |
+
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
493 |
+
]
|
494 |
+
|
495 |
+
model_inputs["labels"] = labels["input_ids"]
|
496 |
+
return model_inputs
|
497 |
+
|
498 |
+
if training_args.do_train:
|
499 |
+
if "train" not in raw_datasets:
|
500 |
+
raise ValueError("--do_train requires a train dataset")
|
501 |
+
train_dataset = raw_datasets["train"]
|
502 |
+
if data_args.max_train_samples is not None:
|
503 |
+
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
504 |
+
train_dataset = train_dataset.select(range(max_train_samples))
|
505 |
+
with training_args.main_process_first(desc="train dataset map pre-processing"):
|
506 |
+
train_dataset = train_dataset.map(
|
507 |
+
preprocess_function,
|
508 |
+
batched=True,
|
509 |
+
num_proc=data_args.preprocessing_num_workers,
|
510 |
+
remove_columns=column_names,
|
511 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
512 |
+
desc="Running tokenizer on train dataset",
|
513 |
+
)
|
514 |
+
|
515 |
+
if training_args.do_eval:
|
516 |
+
max_target_length = data_args.val_max_target_length
|
517 |
+
if "validation" not in raw_datasets:
|
518 |
+
raise ValueError("--do_eval requires a validation dataset")
|
519 |
+
eval_dataset = raw_datasets["validation"]
|
520 |
+
if data_args.max_eval_samples is not None:
|
521 |
+
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
522 |
+
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
523 |
+
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
524 |
+
eval_dataset = eval_dataset.map(
|
525 |
+
preprocess_function,
|
526 |
+
batched=True,
|
527 |
+
num_proc=data_args.preprocessing_num_workers,
|
528 |
+
remove_columns=column_names,
|
529 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
530 |
+
desc="Running tokenizer on validation dataset",
|
531 |
+
)
|
532 |
+
|
533 |
+
if training_args.do_predict:
|
534 |
+
max_target_length = data_args.val_max_target_length
|
535 |
+
if "test" not in raw_datasets:
|
536 |
+
raise ValueError("--do_predict requires a test dataset")
|
537 |
+
predict_dataset = raw_datasets["test"]
|
538 |
+
if data_args.max_predict_samples is not None:
|
539 |
+
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
|
540 |
+
predict_dataset = predict_dataset.select(range(max_predict_samples))
|
541 |
+
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
542 |
+
predict_dataset = predict_dataset.map(
|
543 |
+
preprocess_function,
|
544 |
+
batched=True,
|
545 |
+
num_proc=data_args.preprocessing_num_workers,
|
546 |
+
remove_columns=column_names,
|
547 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
548 |
+
desc="Running tokenizer on prediction dataset",
|
549 |
+
)
|
550 |
+
|
551 |
+
# Data collator
|
552 |
+
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
553 |
+
if data_args.pad_to_max_length:
|
554 |
+
data_collator = default_data_collator
|
555 |
+
else:
|
556 |
+
data_collator = DataCollatorForSeq2Seq(
|
557 |
+
tokenizer,
|
558 |
+
model=model,
|
559 |
+
label_pad_token_id=label_pad_token_id,
|
560 |
+
pad_to_multiple_of=8 if training_args.fp16 else None,
|
561 |
+
)
|
562 |
+
|
563 |
+
# Metric
|
564 |
+
metric = evaluate.load("sacrebleu", cache_dir=model_args.cache_dir)
|
565 |
+
|
566 |
+
def postprocess_text(preds, labels):
|
567 |
+
preds = [pred.strip() for pred in preds]
|
568 |
+
labels = [[label.strip()] for label in labels]
|
569 |
+
|
570 |
+
return preds, labels
|
571 |
+
|
572 |
+
def compute_metrics(eval_preds):
|
573 |
+
preds, labels = eval_preds
|
574 |
+
if isinstance(preds, tuple):
|
575 |
+
preds = preds[0]
|
576 |
+
# Replace -100s used for padding as we can't decode them
|
577 |
+
preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
|
578 |
+
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
579 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
580 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
581 |
+
|
582 |
+
# Some simple post-processing
|
583 |
+
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
|
584 |
+
|
585 |
+
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
586 |
+
result = {"bleu": result["score"]}
|
587 |
+
|
588 |
+
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
589 |
+
result["gen_len"] = np.mean(prediction_lens)
|
590 |
+
result = {k: round(v, 4) for k, v in result.items()}
|
591 |
+
return result
|
592 |
+
|
593 |
+
# Initialize our Trainer
|
594 |
+
trainer = Seq2SeqTrainer(
|
595 |
+
model=model,
|
596 |
+
args=training_args,
|
597 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
598 |
+
eval_dataset=eval_dataset if training_args.do_eval else None,
|
599 |
+
tokenizer=tokenizer,
|
600 |
+
data_collator=data_collator,
|
601 |
+
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
602 |
+
)
|
603 |
+
|
604 |
+
# Training
|
605 |
+
if training_args.do_train:
|
606 |
+
checkpoint = None
|
607 |
+
if training_args.resume_from_checkpoint is not None:
|
608 |
+
checkpoint = training_args.resume_from_checkpoint
|
609 |
+
elif last_checkpoint is not None:
|
610 |
+
checkpoint = last_checkpoint
|
611 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
612 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
613 |
+
|
614 |
+
metrics = train_result.metrics
|
615 |
+
max_train_samples = (
|
616 |
+
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
617 |
+
)
|
618 |
+
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
619 |
+
|
620 |
+
trainer.log_metrics("train", metrics)
|
621 |
+
trainer.save_metrics("train", metrics)
|
622 |
+
trainer.save_state()
|
623 |
+
|
624 |
+
# Evaluation
|
625 |
+
results = {}
|
626 |
+
max_length = (
|
627 |
+
training_args.generation_max_length
|
628 |
+
if training_args.generation_max_length is not None
|
629 |
+
else data_args.val_max_target_length
|
630 |
+
)
|
631 |
+
num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
|
632 |
+
if training_args.do_eval:
|
633 |
+
logger.info("*** Evaluate ***")
|
634 |
+
|
635 |
+
metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
|
636 |
+
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
637 |
+
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
638 |
+
|
639 |
+
trainer.log_metrics("eval", metrics)
|
640 |
+
trainer.save_metrics("eval", metrics)
|
641 |
+
|
642 |
+
if training_args.do_predict:
|
643 |
+
logger.info("*** Predict ***")
|
644 |
+
|
645 |
+
predict_results = trainer.predict(
|
646 |
+
predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
|
647 |
+
)
|
648 |
+
metrics = predict_results.metrics
|
649 |
+
max_predict_samples = (
|
650 |
+
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
|
651 |
+
)
|
652 |
+
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
|
653 |
+
|
654 |
+
trainer.log_metrics("predict", metrics)
|
655 |
+
trainer.save_metrics("predict", metrics)
|
656 |
+
|
657 |
+
if trainer.is_world_process_zero():
|
658 |
+
if training_args.predict_with_generate:
|
659 |
+
predictions = predict_results.predictions
|
660 |
+
predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
|
661 |
+
predictions = tokenizer.batch_decode(
|
662 |
+
predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
663 |
+
)
|
664 |
+
predictions = [pred.strip() for pred in predictions]
|
665 |
+
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
|
666 |
+
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
667 |
+
writer.write("\n".join(predictions))
|
668 |
+
|
669 |
+
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"}
|
670 |
+
if data_args.dataset_name is not None:
|
671 |
+
kwargs["dataset_tags"] = data_args.dataset_name
|
672 |
+
if data_args.dataset_config_name is not None:
|
673 |
+
kwargs["dataset_args"] = data_args.dataset_config_name
|
674 |
+
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
675 |
+
else:
|
676 |
+
kwargs["dataset"] = data_args.dataset_name
|
677 |
+
|
678 |
+
languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None]
|
679 |
+
if len(languages) > 0:
|
680 |
+
kwargs["language"] = languages
|
681 |
+
|
682 |
+
if training_args.push_to_hub:
|
683 |
+
trainer.push_to_hub(**kwargs)
|
684 |
+
else:
|
685 |
+
trainer.create_model_card(**kwargs)
|
686 |
+
|
687 |
+
return results
|
688 |
+
|
689 |
+
|
690 |
+
def _mp_fn(index):
|
691 |
+
# For xla_spawn (TPUs)
|
692 |
+
main()
|
693 |
+
|
694 |
+
|
695 |
+
if __name__ == "__main__":
|
696 |
+
main()
|