|
|
|
import argparse |
|
import os |
|
import random |
|
import time |
|
from distutils.util import strtobool |
|
|
|
import gymnasium as gym |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
from stable_baselines3.common.buffers import ReplayBuffer |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
|
|
def parse_args(): |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), |
|
help="the name of this experiment") |
|
parser.add_argument("--seed", type=int, default=1, |
|
help="seed of the experiment") |
|
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, `torch.backends.cudnn.deterministic=False`") |
|
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, cuda will be enabled by default") |
|
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="if toggled, this experiment will be tracked with Weights and Biases") |
|
parser.add_argument("--wandb-project-name", type=str, default="cleanRL", |
|
help="the wandb's project name") |
|
parser.add_argument("--wandb-entity", type=str, default=None, |
|
help="the entity (team) of wandb's project") |
|
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to capture videos of the agent performances (check out `videos` folder)") |
|
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to save model into the `runs/{run_name}` folder") |
|
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to upload the saved model to huggingface") |
|
parser.add_argument("--hf-entity", type=str, default="", |
|
help="the user or org name of the model repository from the Hugging Face Hub") |
|
|
|
|
|
parser.add_argument("--env-id", type=str, default="Hopper-v4", |
|
help="the id of the environment") |
|
parser.add_argument("--total-timesteps", type=int, default=1000000, |
|
help="total timesteps of the experiments") |
|
parser.add_argument("--buffer-size", type=int, default=int(1e6), |
|
help="the replay memory buffer size") |
|
parser.add_argument("--gamma", type=float, default=0.99, |
|
help="the discount factor gamma") |
|
parser.add_argument("--tau", type=float, default=0.005, |
|
help="target smoothing coefficient (default: 0.005)") |
|
parser.add_argument("--batch-size", type=int, default=256, |
|
help="the batch size of sample from the reply memory") |
|
parser.add_argument("--learning-starts", type=int, default=5e3, |
|
help="timestep to start learning") |
|
parser.add_argument("--policy-lr", type=float, default=3e-4, |
|
help="the learning rate of the policy network optimizer") |
|
parser.add_argument("--q-lr", type=float, default=1e-3, |
|
help="the learning rate of the Q network network optimizer") |
|
parser.add_argument("--policy-frequency", type=int, default=2, |
|
help="the frequency of training policy (delayed)") |
|
parser.add_argument("--target-network-frequency", type=int, default=1, |
|
help="the frequency of updates for the target nerworks") |
|
parser.add_argument("--noise-clip", type=float, default=0.5, |
|
help="noise clip parameter of the Target Policy Smoothing Regularization") |
|
parser.add_argument("--alpha", type=float, default=0.2, |
|
help="Entropy regularization coefficient.") |
|
parser.add_argument("--autotune", type=lambda x:bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="automatic tuning of the entropy coefficient") |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def make_env(env_id, seed, idx, capture_video, run_name): |
|
def thunk(): |
|
if capture_video and idx == 0: |
|
env = gym.make(env_id, render_mode="rgb_array") |
|
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") |
|
else: |
|
env = gym.make(env_id) |
|
env = gym.wrappers.RecordEpisodeStatistics(env) |
|
env.action_space.seed(seed) |
|
return env |
|
|
|
return thunk |
|
|
|
|
|
|
|
class SoftQNetwork(nn.Module): |
|
def __init__(self, env): |
|
super().__init__() |
|
self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod() + np.prod(env.single_action_space.shape), 256) |
|
self.fc2 = nn.Linear(256, 256) |
|
self.fc3 = nn.Linear(256, 1) |
|
|
|
def forward(self, x, a): |
|
x = torch.cat([x, a], 1) |
|
x = F.relu(self.fc1(x)) |
|
x = F.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
|
|
LOG_STD_MAX = 2 |
|
LOG_STD_MIN = -5 |
|
|
|
|
|
class Actor(nn.Module): |
|
def __init__(self, env): |
|
super().__init__() |
|
self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod(), 256) |
|
self.fc2 = nn.Linear(256, 256) |
|
self.fc_mean = nn.Linear(256, np.prod(env.single_action_space.shape)) |
|
self.fc_logstd = nn.Linear(256, np.prod(env.single_action_space.shape)) |
|
|
|
self.register_buffer( |
|
"action_scale", torch.tensor((env.action_space.high - env.action_space.low) / 2.0, dtype=torch.float32) |
|
) |
|
self.register_buffer( |
|
"action_bias", torch.tensor((env.action_space.high + env.action_space.low) / 2.0, dtype=torch.float32) |
|
) |
|
|
|
def forward(self, x): |
|
x = F.relu(self.fc1(x)) |
|
x = F.relu(self.fc2(x)) |
|
mean = self.fc_mean(x) |
|
log_std = self.fc_logstd(x) |
|
log_std = torch.tanh(log_std) |
|
log_std = LOG_STD_MIN + 0.5 * (LOG_STD_MAX - LOG_STD_MIN) * (log_std + 1) |
|
|
|
return mean, log_std |
|
|
|
def get_action(self, x): |
|
mean, log_std = self(x) |
|
std = log_std.exp() |
|
normal = torch.distributions.Normal(mean, std) |
|
x_t = normal.rsample() |
|
y_t = torch.tanh(x_t) |
|
action = y_t * self.action_scale + self.action_bias |
|
log_prob = normal.log_prob(x_t) |
|
|
|
log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + 1e-6) |
|
log_prob = log_prob.sum(1, keepdim=True) |
|
mean = torch.tanh(mean) * self.action_scale + self.action_bias |
|
return action, log_prob, mean |
|
|
|
|
|
if __name__ == "__main__": |
|
import stable_baselines3 as sb3 |
|
|
|
if sb3.__version__ < "2.0": |
|
raise ValueError( |
|
"""Ongoing migration: run the following command to install the new dependencies: |
|
poetry run pip install "stable_baselines3==2.0.0a1" |
|
""" |
|
) |
|
|
|
args = parse_args() |
|
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}" |
|
if args.track: |
|
import wandb |
|
|
|
wandb.init( |
|
project=args.wandb_project_name, |
|
entity=args.wandb_entity, |
|
sync_tensorboard=True, |
|
config=vars(args), |
|
name=run_name, |
|
monitor_gym=True, |
|
save_code=True, |
|
) |
|
writer = SummaryWriter(f"runs/{run_name}") |
|
writer.add_text( |
|
"hyperparameters", |
|
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), |
|
) |
|
|
|
|
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
torch.backends.cudnn.deterministic = args.torch_deterministic |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") |
|
|
|
|
|
envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)]) |
|
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported" |
|
|
|
max_action = float(envs.single_action_space.high[0]) |
|
|
|
actor = Actor(envs).to(device) |
|
qf1 = SoftQNetwork(envs).to(device) |
|
qf2 = SoftQNetwork(envs).to(device) |
|
qf1_target = SoftQNetwork(envs).to(device) |
|
qf2_target = SoftQNetwork(envs).to(device) |
|
qf1_target.load_state_dict(qf1.state_dict()) |
|
qf2_target.load_state_dict(qf2.state_dict()) |
|
q_optimizer = optim.Adam(list(qf1.parameters()) + list(qf2.parameters()), lr=args.q_lr) |
|
actor_optimizer = optim.Adam(list(actor.parameters()), lr=args.policy_lr) |
|
|
|
|
|
if args.autotune: |
|
target_entropy = -torch.prod(torch.Tensor(envs.single_action_space.shape).to(device)).item() |
|
log_alpha = torch.zeros(1, requires_grad=True, device=device) |
|
alpha = log_alpha.exp().item() |
|
a_optimizer = optim.Adam([log_alpha], lr=args.q_lr) |
|
else: |
|
alpha = args.alpha |
|
|
|
envs.single_observation_space.dtype = np.float32 |
|
rb = ReplayBuffer( |
|
args.buffer_size, |
|
envs.single_observation_space, |
|
envs.single_action_space, |
|
device, |
|
handle_timeout_termination=False, |
|
) |
|
start_time = time.time() |
|
|
|
|
|
obs, _ = envs.reset(seed=args.seed) |
|
for global_step in range(args.total_timesteps): |
|
|
|
if global_step < args.learning_starts: |
|
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)]) |
|
else: |
|
actions, _, _ = actor.get_action(torch.Tensor(obs).to(device)) |
|
actions = actions.detach().cpu().numpy() |
|
|
|
|
|
next_obs, rewards, terminations, truncations, infos = envs.step(actions) |
|
|
|
|
|
if "final_info" in infos: |
|
for info in infos["final_info"]: |
|
print(f"global_step={global_step}, episodic_return={info['episode']['r']}") |
|
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step) |
|
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step) |
|
break |
|
|
|
|
|
real_next_obs = next_obs.copy() |
|
for idx, trunc in enumerate(truncations): |
|
if trunc: |
|
real_next_obs[idx] = infos["final_observation"][idx] |
|
rb.add(obs, real_next_obs, actions, rewards, terminations, infos) |
|
|
|
|
|
obs = next_obs |
|
|
|
|
|
if global_step > args.learning_starts: |
|
data = rb.sample(args.batch_size) |
|
with torch.no_grad(): |
|
next_state_actions, next_state_log_pi, _ = actor.get_action(data.next_observations) |
|
qf1_next_target = qf1_target(data.next_observations, next_state_actions) |
|
qf2_next_target = qf2_target(data.next_observations, next_state_actions) |
|
min_qf_next_target = torch.min(qf1_next_target, qf2_next_target) - alpha * next_state_log_pi |
|
next_q_value = data.rewards.flatten() + (1 - data.dones.flatten()) * args.gamma * (min_qf_next_target).view(-1) |
|
|
|
qf1_a_values = qf1(data.observations, data.actions).view(-1) |
|
qf2_a_values = qf2(data.observations, data.actions).view(-1) |
|
qf1_loss = F.mse_loss(qf1_a_values, next_q_value) |
|
qf2_loss = F.mse_loss(qf2_a_values, next_q_value) |
|
qf_loss = qf1_loss + qf2_loss |
|
|
|
|
|
q_optimizer.zero_grad() |
|
qf_loss.backward() |
|
q_optimizer.step() |
|
|
|
if global_step % args.policy_frequency == 0: |
|
for _ in range( |
|
args.policy_frequency |
|
): |
|
pi, log_pi, _ = actor.get_action(data.observations) |
|
qf1_pi = qf1(data.observations, pi) |
|
qf2_pi = qf2(data.observations, pi) |
|
min_qf_pi = torch.min(qf1_pi, qf2_pi) |
|
actor_loss = ((alpha * log_pi) - min_qf_pi).mean() |
|
|
|
actor_optimizer.zero_grad() |
|
actor_loss.backward() |
|
actor_optimizer.step() |
|
|
|
if args.autotune: |
|
with torch.no_grad(): |
|
_, log_pi, _ = actor.get_action(data.observations) |
|
alpha_loss = (-log_alpha.exp() * (log_pi + target_entropy)).mean() |
|
|
|
a_optimizer.zero_grad() |
|
alpha_loss.backward() |
|
a_optimizer.step() |
|
alpha = log_alpha.exp().item() |
|
|
|
|
|
if global_step % args.target_network_frequency == 0: |
|
for param, target_param in zip(qf1.parameters(), qf1_target.parameters()): |
|
target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data) |
|
for param, target_param in zip(qf2.parameters(), qf2_target.parameters()): |
|
target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data) |
|
|
|
if global_step % 100 == 0: |
|
writer.add_scalar("losses/qf1_values", qf1_a_values.mean().item(), global_step) |
|
writer.add_scalar("losses/qf2_values", qf2_a_values.mean().item(), global_step) |
|
writer.add_scalar("losses/qf1_loss", qf1_loss.item(), global_step) |
|
writer.add_scalar("losses/qf2_loss", qf2_loss.item(), global_step) |
|
writer.add_scalar("losses/qf_loss", qf_loss.item() / 2.0, global_step) |
|
writer.add_scalar("losses/actor_loss", actor_loss.item(), global_step) |
|
writer.add_scalar("losses/alpha", alpha, global_step) |
|
print("SPS:", int(global_step / (time.time() - start_time))) |
|
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step) |
|
if args.autotune: |
|
writer.add_scalar("losses/alpha_loss", alpha_loss.item(), global_step) |
|
|
|
if args.save_model: |
|
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model" |
|
torch.save((actor.state_dict(), qf1.state_dict(), qf2.state_dict()), model_path) |
|
print(f"model saved to {model_path}") |
|
from cleanrl_utils.evals.sac_eval import evaluate |
|
|
|
episodic_returns = evaluate( |
|
model_path, |
|
make_env, |
|
args.env_id, |
|
eval_episodes=10, |
|
run_name=f"{run_name}-eval", |
|
Model=(Actor, SoftQNetwork), |
|
device=device, |
|
) |
|
for idx, episodic_return in enumerate(episodic_returns): |
|
writer.add_scalar("eval/episodic_return", episodic_return, idx) |
|
|
|
if args.upload_model: |
|
from cleanrl_utils.huggingface import push_to_hub |
|
|
|
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}" |
|
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name |
|
push_to_hub(args, episodic_returns, repo_id, "SAC", f"runs/{run_name}", f"videos/{run_name}-eval") |
|
|
|
envs.close() |
|
writer.close() |
|
|