ppe-LunarLander-v2 / config.json
sdpetrides's picture
Initial commit with basic training
72fb460
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3fc418290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3fc418320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3fc4183b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3fc418440>", "_build": "<function ActorCriticPolicy._build at 0x7fe3fc4184d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe3fc418560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3fc4185f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe3fc418680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3fc418710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3fc4187a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3fc418830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe3fc3e57b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653605597.098445, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgPQpvb52cj/uXAe9uZGCvlTOGL1iWoa8AAAAAAAAAAAAoge9SNnSOS8YrDtwzPI8rAfJuzbRr7sAAIA/AACAP83rvr3hPpS6fe1fuTTCwLRfiR07IHZ/OAAAgD8AAIA/TQt4PRSEibpLJke8p9wxM7wtPrpw4GezAACAPwAAgD+Av8k9KYhDuthEvbp29aa2Opg7u6LsFzYAAIA/AACAP3MfLb57BO261siPOrfzxjYRNNI70J6nuQAAgD8AAIA/zcrHvCnIObpYR7+7sQc4ODT1ajpdxXk6AACAPwAAgD9mLIo9cd0auanJSzqeuNm0H8nZu1tDdLkAAIA/AACAP23SY74t3Xw/vr0zvjk0BL9zVJy+frlzPQAAAAAAAAAApmzfPY/+C7p1rvO6YxxnN/2+PTsWLam2AACAPwAAgD8FFYK+15VgPHUynDzgkSq95SwPv+oOdL4AAAAAAACAP1qhoL0pBAG6NH6MuQk50rQQ/3w7eISiOAAAgD8AAIA/AM+0vRTIirr2luk7hNkEvYg6ULsb3U69AAAAAAAAAADAz429hSuxOFGKoLlVfboyri8QO9QHwTgAAIA/AACAP83aAz2PthS6TnLTuvEkp7WhtzW6AL/1OQAAgD8AAIA/GhHzvXs4wrrtCjs+J+reu8+iD70XfQo+AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdvusMlPmOsCUhpRSlIwBbJRL94wBdJRHQIZJ0cABDG91fZQoaAZoCWgPQwjhtrbwvI5IwJSGlFKUaBVNIwFoFkdAhmT+6qbSZ3V9lChoBmgJaA9DCHGqtTALBFtAlIaUUpRoFU3oA2gWR0CGdWukk8ifdX2UKGgGaAloD0MI0jk/xXFKXkCUhpRSlGgVTegDaBZHQIaDqTY/Vy51fZQoaAZoCWgPQwg4LXjRVy5gQJSGlFKUaBVN6ANoFkdAhr5aQ/5cknV9lChoBmgJaA9DCH0JFRxek2FAlIaUUpRoFU3oA2gWR0CGxSPwNLDidX2UKGgGaAloD0MIjiEAOPY+U0CUhpRSlGgVTegDaBZHQIbI5hnanJl1fZQoaAZoCWgPQwguHt5zYN1gQJSGlFKUaBVN6ANoFkdAhtaJrULDynV9lChoBmgJaA9DCMTqjzAM82FAlIaUUpRoFU3oA2gWR0CG2Ussg+yJdX2UKGgGaAloD0MIX9BCAkZVXkCUhpRSlGgVTegDaBZHQIbgOUQkHD91fZQoaAZoCWgPQwg57//jhN5eQJSGlFKUaBVN6ANoFkdAhuDDGLk0anV9lChoBmgJaA9DCOyJrgu/w2BAlIaUUpRoFU3oA2gWR0CG5bGQ0XP7dX2UKGgGaAloD0MIaD7nbtcuXUCUhpRSlGgVTegDaBZHQIboMURFqi51fZQoaAZoCWgPQwht4uR+hw5kQJSGlFKUaBVN6ANoFkdAhukFOXVslHV9lChoBmgJaA9DCJTeN752UGJAlIaUUpRoFU3oA2gWR0CG7e2Ifr8jdX2UKGgGaAloD0MIKqp+pXNuY0CUhpRSlGgVTegDaBZHQIbxKzNUwSJ1fZQoaAZoCWgPQwiHhzB+Ggs6QJSGlFKUaBVNBAFoFkdAhveCzkZJkHV9lChoBmgJaA9DCOHSMecZozlAlIaUUpRoFUvYaBZHQIcCvXZoPCl1fZQoaAZoCWgPQwi2LF+X4bFCQJSGlFKUaBVL2WgWR0CHFjzySV4YdX2UKGgGaAloD0MItwiM9Q0eWECUhpRSlGgVTegDaBZHQIcWjEgntv51fZQoaAZoCWgPQwjF5A0w87NXQJSGlFKUaBVN6ANoFkdAhy8nBUJfIHV9lChoBmgJaA9DCOWAXU0e1mJAlIaUUpRoFU3oA2gWR0CHPMDxLCemdX2UKGgGaAloD0MIlpf8T/6YXUCUhpRSlGgVTegDaBZHQIdIznied091fZQoaAZoCWgPQwjshQK2A61iQJSGlFKUaBVN6ANoFkdAh0ziDdxhlXV9lChoBmgJaA9DCI8X0uEhN2ZAlIaUUpRoFU3oA2gWR0CHhrwvQF9sdX2UKGgGaAloD0MIqI5VSs8AYUCUhpRSlGgVTegDaBZHQIeJ10DEFW51fZQoaAZoCWgPQwhZxLDDmBBgQJSGlFKUaBVN6ANoFkdAh5ja42CNCXV9lChoBmgJaA9DCHy2Dg72lhBAlIaUUpRoFUvfaBZHQIebjvqkdmx1fZQoaAZoCWgPQwh4KuCe56VkQJSGlFKUaBVN6ANoFkdAh5+IzeoDPnV9lChoBmgJaA9DCK33G+04kGBAlIaUUpRoFU3oA2gWR0CHn/fkWAPNdX2UKGgGaAloD0MI5kAPte1UYkCUhpRSlGgVTegDaBZHQIekkDjin511fZQoaAZoCWgPQwiX4xWInhpnQJSGlFKUaBVN6ANoFkdAh6cDhUBGQXV9lChoBmgJaA9DCIhLjjulv2FAlIaUUpRoFU3oA2gWR0CHrKHaews5dX2UKGgGaAloD0MI0V0SZ8WIZECUhpRSlGgVTegDaBZHQIewElolD4R1fZQoaAZoCWgPQwihZkgVxcM4QJSGlFKUaBVL3WgWR0CHt0RZlnRLdX2UKGgGaAloD0MIaQJFLGIOVECUhpRSlGgVTegDaBZHQIfC6S1Vo6F1fZQoaAZoCWgPQwgkY7X5f7tBQJSGlFKUaBVL9GgWR0CH0S5GSZBtdX2UKGgGaAloD0MIK6ORzysFXkCUhpRSlGgVTegDaBZHQIfVuf5DZ151fZQoaAZoCWgPQwhLrIxGPhhfQJSGlFKUaBVN6ANoFkdAh9YEF4cFQnV9lChoBmgJaA9DCIts5/upMUxAlIaUUpRoFUvkaBZHQIfXKhg3Lmp1fZQoaAZoCWgPQwhtVRLZB/ElQJSGlFKUaBVL6GgWR0CH5E9du5z6dX2UKGgGaAloD0MI+5KNB9u0YECUhpRSlGgVTegDaBZHQIftSL876pJ1fZQoaAZoCWgPQwjpYP2fwxFfQJSGlFKUaBVN6ANoFkdAh/tKcd5prXV9lChoBmgJaA9DCFfqWRDKGVZAlIaUUpRoFU3oA2gWR0CIC+6nzg/DdX2UKGgGaAloD0MI/n3GhQOLYkCUhpRSlGgVTegDaBZHQIgSRhQWN3p1fZQoaAZoCWgPQwgLfhtivEhIQJSGlFKUaBVL+2gWR0CISR1s+FDfdX2UKGgGaAloD0MIHH433TIgYECUhpRSlGgVTegDaBZHQIhLTNjbzsh1fZQoaAZoCWgPQwg5miMrvwzEv5SGlFKUaBVL+GgWR0CIVe0Jng5zdX2UKGgGaAloD0MIA5SGGoVmY0CUhpRSlGgVTegDaBZHQIhazxd6cAl1fZQoaAZoCWgPQwjFWKZfIkBGQJSGlFKUaBVN6ANoFkdAiGHZq/M4cXV9lChoBmgJaA9DCNGQ8SiVZVtAlIaUUpRoFU3oA2gWR0CIYkj1wo9cdX2UKGgGaAloD0MIEEHV6FWoYECUhpRSlGgVTegDaBZHQIhnTcj7hvR1fZQoaAZoCWgPQwhEp+fdWPhcQJSGlFKUaBVN6ANoFkdAiGoUmUnogXV9lChoBmgJaA9DCAUabOq8C2JAlIaUUpRoFU3oA2gWR0CIcCr/82rGdX2UKGgGaAloD0MIeZJ0zeQLYkCUhpRSlGgVTegDaBZHQIiXQao/A0t1fZQoaAZoCWgPQwi+3CdHgWNkQJSGlFKUaBVN6ANoFkdAiJxZJK8L8nV9lChoBmgJaA9DCINRSZ2AN1pAlIaUUpRoFU3oA2gWR0CInKvgWJrMdX2UKGgGaAloD0MIpONqZNdkYkCUhpRSlGgVTegDaBZHQIid4wVTJhh1fZQoaAZoCWgPQwh/bf30n0NpQJSGlFKUaBVNggFoFkdAiKEbGvOhTXV9lChoBmgJaA9DCMSUSKKXIGNAlIaUUpRoFU3oA2gWR0CIqjkd3jdYdX2UKGgGaAloD0MIOslWl1N0T0CUhpRSlGgVS8loFkdAiLjBp5/smnV9lChoBmgJaA9DCOokW11O/T5AlIaUUpRoFUvqaBZHQIi8JPO6d2B1fZQoaAZoCWgPQwgXuDzWDJJgQJSGlFKUaBVN6ANoFkdAiM9iKaXrt3V9lChoBmgJaA9DCMReKGA7SFxAlIaUUpRoFU3oA2gWR0CI1Y6XBxgidX2UKGgGaAloD0MIrkZ2pWV8XECUhpRSlGgVTegDaBZHQIjXFHH3lCF1fZQoaAZoCWgPQwhcrn5skvFjQJSGlFKUaBVN6ANoFkdAiNkjP4VRDXV9lChoBmgJaA9DCBh7L75o1WJAlIaUUpRoFU3oA2gWR0CJGRJW/8EWdX2UKGgGaAloD0MI+HDJcadMWUCUhpRSlGgVTegDaBZHQIkeC/dqL0l1fZQoaAZoCWgPQwjCL/XzprRhQJSGlFKUaBVN6ANoFkdAiSRVpKzzE3V9lChoBmgJaA9DCDuMSX8vgFhAlIaUUpRoFU3oA2gWR0CJJLaVUuL8dX2UKGgGaAloD0MITDRIwVOYKECUhpRSlGgVS/BoFkdAiSZw+UyHmHV9lChoBmgJaA9DCBR4J58eUldAlIaUUpRoFU3oA2gWR0CJKOj7hvR7dX2UKGgGaAloD0MI5sk1BTIjY0CUhpRSlGgVTegDaBZHQIkwvOQhfSh1fZQoaAZoCWgPQwjOjH40nNorQJSGlFKUaBVNAAFoFkdAiUlaf8MuvnV9lChoBmgJaA9DCGgEG9e/iFhAlIaUUpRoFU3oA2gWR0CJVlz7uUlidX2UKGgGaAloD0MIbEHvjSHNYkCUhpRSlGgVTegDaBZHQIlawmois4l1fZQoaAZoCWgPQwgZOKClKwheQJSGlFKUaBVN6ANoFkdAiV9UdJaq0nV9lChoBmgJaA9DCMnp6/kaCGFAlIaUUpRoFU3oA2gWR0CJaDWf9P1tdX2UKGgGaAloD0MIdk8eFmorW0CUhpRSlGgVTegDaBZHQIl2ikO7QLN1fZQoaAZoCWgPQwhvERjrm5BhQJSGlFKUaBVN6ANoFkdAiXnwRXfZVXV9lChoBmgJaA9DCIVE2sYf5mBAlIaUUpRoFU3oA2gWR0CJkueCkGiYdX2UKGgGaAloD0MIBhIUP8Z6ZECUhpRSlGgVTegDaBZHQImUcSElE7Z1fZQoaAZoCWgPQwiTADW1bJVmQJSGlFKUaBVN6ANoFkdAiZZ71yvLYHV9lChoBmgJaA9DCFN7EW3HQ2VAlIaUUpRoFU3oA2gWR0CJ1fMkhRqHdX2UKGgGaAloD0MI73IR34lNY0CUhpRSlGgVTegDaBZHQInbFAX2ugZ1fZQoaAZoCWgPQwhW1jbFY2JkQJSGlFKUaBVN6ANoFkdAieH4VZcLSnV9lChoBmgJaA9DCEOpvYi2KF5AlIaUUpRoFU3oA2gWR0CJ4l15B1LbdX2UKGgGaAloD0MIDw9h/DROZkCUhpRSlGgVTegDaBZHQInkCagElmh1fZQoaAZoCWgPQwhkAn6NJHkyQJSGlFKUaBVL12gWR0CJ5a8dxQzldX2UKGgGaAloD0MIjV4NUBrBYECUhpRSlGgVTegDaBZHQInvE+JP69F1fZQoaAZoCWgPQwiRmKCGbx03QJSGlFKUaBVL9WgWR0CJ9jBLPD51dX2UKGgGaAloD0MI6+HLRBHfXkCUhpRSlGgVTegDaBZHQIoI0jgQ6IZ1fZQoaAZoCWgPQwijyFpDqQ9dQJSGlFKUaBVN6ANoFkdAihYgsCkoF3V9lChoBmgJaA9DCNsV+mAZGldAlIaUUpRoFU3oA2gWR0CKGwdeY2KmdX2UKGgGaAloD0MI7zuGx/5xYUCUhpRSlGgVTegDaBZHQIogH3cpLEl1fZQoaAZoCWgPQwhkOnR63mxZQJSGlFKUaBVN6ANoFkdAiimyS3b213V9lChoBmgJaA9DCNTuVwE+cmVAlIaUUpRoFU3oA2gWR0CKOXxy4nWrdX2UKGgGaAloD0MIX9Gt13Q8ZkCUhpRSlGgVTegDaBZHQIo9W/SH/Ll1fZQoaAZoCWgPQwjI7Cx6p/NZQJSGlFKUaBVN6ANoFkdAiliPoePq93V9lChoBmgJaA9DCPnaM0uCuGNAlIaUUpRoFU3oA2gWR0CKWuRbKRuCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}