Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,85 @@
|
|
1 |
---
|
2 |
license: gpl-3.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: gpl-3.0
|
3 |
+
language:
|
4 |
+
- es
|
5 |
+
library_name: spacy
|
6 |
+
pipeline_tag: token-classification
|
7 |
+
tags:
|
8 |
+
- spacy
|
9 |
+
- token-classification
|
10 |
+
widget:
|
11 |
+
- text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago."
|
12 |
+
- text: "El proyecto lo financia el Ministerio de Industria y Competitividad."
|
13 |
+
model-index:
|
14 |
+
- name: es_spacy_ner_cds
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: NER
|
18 |
+
type: token-classification
|
19 |
+
metrics:
|
20 |
+
- name: NER Precision
|
21 |
+
type: precision
|
22 |
+
value: 0.9690286251
|
23 |
+
- name: NER Recall
|
24 |
+
type: recall
|
25 |
+
value: 0.9683470106
|
26 |
+
- name: NER F Score
|
27 |
+
type: f_score
|
28 |
+
value: 0.9686876979
|
29 |
---
|
30 |
+
|
31 |
+
# Introduction
|
32 |
+
|
33 |
+
spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
|
34 |
+
|
35 |
+
| Feature | Description |
|
36 |
+
| --- | --- |
|
37 |
+
| **Name** | `es_spacy_ner_cds_trf` |
|
38 |
+
| **Version** | `0.0.1a` |
|
39 |
+
| **spaCy** | `>=3.4.4,<3.5.0` |
|
40 |
+
| **Default Pipeline** | `transformer`, `ner` |
|
41 |
+
| **Components** | `transformer`, `ner` |
|
42 |
+
|
43 |
+
### Label Scheme
|
44 |
+
|
45 |
+
<details>
|
46 |
+
|
47 |
+
<summary>View label scheme (4 labels for 1 components)</summary>
|
48 |
+
|
49 |
+
| Component | Labels |
|
50 |
+
| --- | --- |
|
51 |
+
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
|
52 |
+
|
53 |
+
</details>
|
54 |
+
|
55 |
+
## Usage
|
56 |
+
|
57 |
+
You can use this model with the spaCy *pipeline* for NER.
|
58 |
+
|
59 |
+
```python
|
60 |
+
import spacy
|
61 |
+
from spacy.pipeline import merge_entities
|
62 |
+
|
63 |
+
|
64 |
+
nlp = spacy.load("es_spacy_ner_cds_trf")
|
65 |
+
nlp.add_pipe('sentencizer')
|
66 |
+
|
67 |
+
example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitividad."
|
68 |
+
ner_pipe = nlp(example)
|
69 |
+
|
70 |
+
print(ner_pipe.ents)
|
71 |
+
for token in merge_entities(ner_pipe):
|
72 |
+
print(token.text, token.ent_type_)
|
73 |
+
```
|
74 |
+
|
75 |
+
## Dataset
|
76 |
+
|
77 |
+
ToDo
|
78 |
+
|
79 |
+
### Accuracy
|
80 |
+
|
81 |
+
| Type | Score |
|
82 |
+
| --- | --- |
|
83 |
+
| `ENTS_F` | 96.87 |
|
84 |
+
| `ENTS_P` | 96.90 |
|
85 |
+
| `ENTS_R` | 96.83 |
|