sdocio commited on
Commit
afc6ffb
1 Parent(s): 7df6823

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md CHANGED
@@ -1,3 +1,85 @@
1
  ---
2
  license: gpl-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: gpl-3.0
3
+ language:
4
+ - es
5
+ library_name: spacy
6
+ pipeline_tag: token-classification
7
+ tags:
8
+ - spacy
9
+ - token-classification
10
+ widget:
11
+ - text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago."
12
+ - text: "El proyecto lo financia el Ministerio de Industria y Competitividad."
13
+ model-index:
14
+ - name: es_spacy_ner_cds
15
+ results:
16
+ - task:
17
+ name: NER
18
+ type: token-classification
19
+ metrics:
20
+ - name: NER Precision
21
+ type: precision
22
+ value: 0.9690286251
23
+ - name: NER Recall
24
+ type: recall
25
+ value: 0.9683470106
26
+ - name: NER F Score
27
+ type: f_score
28
+ value: 0.9686876979
29
  ---
30
+
31
+ # Introduction
32
+
33
+ spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
34
+
35
+ | Feature | Description |
36
+ | --- | --- |
37
+ | **Name** | `es_spacy_ner_cds_trf` |
38
+ | **Version** | `0.0.1a` |
39
+ | **spaCy** | `>=3.4.4,<3.5.0` |
40
+ | **Default Pipeline** | `transformer`, `ner` |
41
+ | **Components** | `transformer`, `ner` |
42
+
43
+ ### Label Scheme
44
+
45
+ <details>
46
+
47
+ <summary>View label scheme (4 labels for 1 components)</summary>
48
+
49
+ | Component | Labels |
50
+ | --- | --- |
51
+ | **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
52
+
53
+ </details>
54
+
55
+ ## Usage
56
+
57
+ You can use this model with the spaCy *pipeline* for NER.
58
+
59
+ ```python
60
+ import spacy
61
+ from spacy.pipeline import merge_entities
62
+
63
+
64
+ nlp = spacy.load("es_spacy_ner_cds_trf")
65
+ nlp.add_pipe('sentencizer')
66
+
67
+ example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitividad."
68
+ ner_pipe = nlp(example)
69
+
70
+ print(ner_pipe.ents)
71
+ for token in merge_entities(ner_pipe):
72
+ print(token.text, token.ent_type_)
73
+ ```
74
+
75
+ ## Dataset
76
+
77
+ ToDo
78
+
79
+ ### Accuracy
80
+
81
+ | Type | Score |
82
+ | --- | --- |
83
+ | `ENTS_F` | 96.87 |
84
+ | `ENTS_P` | 96.90 |
85
+ | `ENTS_R` | 96.83 |