sdidier-dev
commited on
Commit
•
7fbe064
1
Parent(s):
ecaca24
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +17 -17
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 260.66 +/- 15.12
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d1381d9b9a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d1381d9ba30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d1381d9bac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d1381d9bb50>", "_build": "<function ActorCriticPolicy._build at 0x7d1381d9bbe0>", "forward": "<function ActorCriticPolicy.forward at 0x7d1381d9bc70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d1381d9bd00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d1381d9bd90>", "_predict": "<function ActorCriticPolicy._predict at 0x7d1381d9be20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d1381d9beb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d1381d9bf40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d1381da4040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d138bd17140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710768538612265085, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYdsD0pIBi8QELPuntTjzwf7nS98GtuPQAAgD8AAIA/mppEPeZbtT6zDhK+o/1WvheOuDpNsm+7AAAAAAAAAADNPQU+57WNPxptCT0xNZ++x0jBPY4kBL4AAAAAAAAAAFqcaT6HuAE/tbyMvcuCUb7jYKA8CCR6PQAAAAAAAAAAM4qwPWhY0T6fuSW+UnJivq9hxrwe55m9AAAAAAAAAAAaJl499ro2vF7Oi7rmJ5U8OLmivZ4QdT0AAIA/AACAPzP8uLyPRm+6xdboM3X0cTCso8A6za2rswAAgD8AAIA/miUzvbfCwT5mvxk+v5FjvgNBm7zKVZw9AAAAAAAAAACzp0m9VBw1Pu6ovj3cKIm+u9DRvNg8zzsAAAAAAAAAAGZ8Hj2ESaY/FXR/PWMPkb6PulY9GOF7vQAAAAAAAAAAzXocvKNvFD+QNg88O0qfvsgkaj1lzfS9AAAAAAAAAACaxtI8C+iVPSpuBL5XFIK+GcSCvefhqLwAAAAAAAAAAGZYfzysRzk+IvuaPeq5l76Q+8g80VjAOwAAAAAAAAAAM8P/vRKzQj6ENLA+tNttvqNEsz1bR2A9AAAAAAAAAABmxgG86XtLPv71kj3uYkW+lJ7+vGOS8D0AAAAAAAAAADPJor0uQKg/i4d/vnN1ir578Ge9MQwFvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9U7aAWi12MAWyUTX0BjAF0lEdAlbTrgOz6anV9lChoBkdAMxhI4EOiFmgHTTgBaAhHQJW36VE/jbV1fZQoaAZHQHFUqwY+B6NoB01LAWgIR0CVuUm9xp+MdX2UKGgGR0Bv6F9+gDigaAdNfgFoCEdAlc2w3T/hl3V9lChoBkdAUGLcqOLiuWgHTQQBaAhHQJXQLLmp2ll1fZQoaAZHQG9HcAiml69oB01cAWgIR0CV0HvWpZOjdX2UKGgGR0BwxBun/DLsaAdNhQFoCEdAldC5ng5zYHV9lChoBkdAb7Z3225QQGgHTWsBaAhHQJXRYeLehwl1fZQoaAZHQG4R5G8VYZFoB01JAWgIR0CV0WMR6F/QdX2UKGgGR0Bwd2aKDTScaAdNVQFoCEdAldHFRxcVxnV9lChoBkdAanGuoP07KmgHTTwBaAhHQJXR0mCyyD91fZQoaAZHQHGrwPZqVQhoB01IAWgIR0CV0pktVaOhdX2UKGgGR8AYcma6STyKaAdNJgFoCEdAldMJKe05VHV9lChoBkdAbjqeRxLkCGgHTX4BaAhHQJXU21qnFYN1fZQoaAZHQHDtZdSl3yJoB01sAWgIR0CV1UywwCbMdX2UKGgGR0BwmKLLpzLfaAdNUQFoCEdAldcd1+y7gHV9lChoBkdAa+GouPFNtmgHTVgBaAhHQJXadSm65G11fZQoaAZHQGuF1GkN4JNoB01MAWgIR0CV2zVrAP/adX2UKGgGR0A4uzposZpBaAdNEgFoCEdAlduQS39aU3V9lChoBkdAccd3OObRW2gHTVIBaAhHQJXct5LRKHx1fZQoaAZHQHFO+nAIpphoB00WAWgIR0CV3UmwJPZadX2UKGgGR0BxXTMMZxaQaAdNMgFoCEdAld40hNdqtnV9lChoBkdAciF/z8P4EmgHTTMBaAhHQJXeQJ1JUYN1fZQoaAZHQG45qiwjdHloB00bA2gIR0CV3lFBIFvAdX2UKGgGR0BtK84DLbHqaAdNRAFoCEdAld90cwQDm3V9lChoBkdAbh6cEvCdjGgHTWABaAhHQJXfgTj/+851fZQoaAZHQHA2fWpZOi5oB01wAWgIR0CV4FQiA2AHdX2UKGgGR0Bwq7Ux20RfaAdNUQFoCEdAleDc3yZrpXV9lChoBkdAbNVe8f3evmgHTUkBaAhHQJXhAqlP8AJ1fZQoaAZHQHHScuJ1q35oB000AWgIR0CV4lsoUi6hdX2UKGgGR0BujgZbY9PlaAdNUwFoCEdAleL52ECeVnV9lChoBkdAcKK6yB06o2gHTUIBaAhHQJXkk8Tzund1fZQoaAZHQEwRoHLRrrRoB0veaAhHQJXmbJ3gUDd1fZQoaAZHQHImeeBg/khoB00lAWgIR0CV5y7kn1FpdX2UKGgGR0Bso9f/m1YyaAdNRAFoCEdAlehP+jua4XV9lChoBkdAQyI5PuXu3WgHTQwBaAhHQJXolzaK1oh1fZQoaAZHQHAx8MAmzB1oB01mAWgIR0CV6T/kNnXedX2UKGgGR0BvhUJa7mMgaAdNQgFoCEdAlemQt8NQTHV9lChoBkdAKxy+g13t8mgHTRUBaAhHQJXqHCgsbvR1fZQoaAZHQHB/JJf6XSloB01dAWgIR0CV6/yuZCv6dX2UKGgGR0BtB5F/hESeaAdNQgFoCEdAlev9y1eBx3V9lChoBkdAbj8oVmBe5WgHTTYBaAhHQJXsQ1WKdhB1fZQoaAZHQHD30rwvxpdoB02AAWgIR0CV7HLsrupkdX2UKGgGR0BEXqoIfKZEaAdNQAFoCEdAle0RjSXt0HV9lChoBkdAcc/ieumrKmgHTUEBaAhHQJXtNWkrPMV1fZQoaAZHQG6X94NZvDRoB01JAWgIR0CV7thegL7XdX2UKGgGR0BxoH9pAUtaaAdNRQFoCEdAle9eBUaQ3nV9lChoBkdAQhAdp7CzkmgHS+9oCEdAlfGUOZssQXV9lChoBkdAcI4wl0HQhWgHTVoBaAhHQJXyF78ejmF1fZQoaAZHQHFq7GipNsZoB00jAWgIR0CV8oMXJo0zdX2UKGgGR0A96KsuFpPAaAdNGQFoCEdAlfSW1MM7VHV9lChoBkdAUB9lYlpoK2gHS+xoCEdAlfYEPH1e0HV9lChoBkdAby3uhsZYP2gHTYABaAhHQJX3J1MdtEZ1fZQoaAZHQG/vTIeYD1ZoB01rAWgIR0CV+ESV4X41dX2UKGgGR0BsZOii7CizaAdNUQFoCEdAlfhjMV1wHnV9lChoBkdAcS44i5d4V2gHTXEBaAhHQJYLN68g6lt1fZQoaAZHQHBRiOFQEZBoB01AAWgIR0CWC3Zm7J4jdX2UKGgGR0BtVUDuBtk4aAdNLwFoCEdAlgvzqfOD8XV9lChoBkdAcEFWFN+LFWgHTXEBaAhHQJYN59PUKAt1fZQoaAZHQHFoky57PY5oB01jAWgIR0CWDg+qioKldX2UKGgGR0BrvcYj0L+haAdNOgFoCEdAlg8dl/Yra3V9lChoBkfAQifSF49ovmgHTQYBaAhHQJYQI5wOvuB1fZQoaAZHQHA42JrLyMFoB01lAWgIR0CWEDR8twrEdX2UKGgGR0BwNMkdFOO9aAdNKwFoCEdAlhCmqxTsIHV9lChoBkdAcIcZhKDkEWgHTXIBaAhHQJYT+uhbnox1fZQoaAZHQGqh7KzRhMJoB01iAWgIR0CWFV/hESdwdX2UKGgGR0BvHl4s3AEdaAdNUAFoCEdAlhWPn4fwJHV9lChoBkdAbuI7VawD/2gHTSwBaAhHQJYVw2eg+Ql1fZQoaAZHQHABREWqLjxoB01SAWgIR0CWFmJkGzKLdX2UKGgGR0BxmgPYnOSoaAdNcAFoCEdAlhhd03fhuXV9lChoBkdAcmenm7rcCmgHTUoBaAhHQJYY8nRb8m91fZQoaAZHQHG6MFINEw5oB00dAWgIR0CWGql/H5rQdX2UKGgGR0BwBY7ZFocraAdNawFoCEdAlhrPXf642HV9lChoBkdAbF63EyckMWgHTXABaAhHQJYc4wtapxZ1fZQoaAZHQG3V9XDFZPloB01yAWgIR0CWHR8Yht+DdX2UKGgGR0BylXLwF1SwaAdNtgFoCEdAlh1PYraufXV9lChoBkdAakjSThYNiGgHTfwCaAhHQJYdbZdv8651fZQoaAZHQHAusZ5zHS5oB01DAWgIR0CWHWvy9VWCdX2UKGgGR0ByPVlYlpoLaAdNOwFoCEdAlh2jQ/oq1HV9lChoBkdAblx8a4tpVWgHTVsBaAhHQJYeQcZLqUx1fZQoaAZHQCV6muTzNEBoB00QAWgIR0CWIBzD4xk/dX2UKGgGR0BwY6WD6FdtaAdNXwFoCEdAliOItpVS43V9lChoBkdAcdPTs6aLGmgHTYkBaAhHQJYjsjLSuyN1fZQoaAZHQHIw8Md92HNoB01yAWgIR0CWI/MMZxaQdX2UKGgGR0BvBzwpe/pMaAdNUQFoCEdAlidE4iosI3V9lChoBkdAcUyKkl/pdWgHTScBaAhHQJYnaXHBDXx1fZQoaAZHQHEnGHHmzSloB01yAWgIR0CWKGx8UmD2dX2UKGgGR0BwsfA1vVEvaAdN5AFoCEdAli0Xh86V+3V9lChoBkdAcYnbONYKY2gHTYEBaAhHQJYtoMLF4s51fZQoaAZHQG2T5X2dupFoB01BAWgIR0CWLa+Lm6oVdX2UKGgGR0BtdARkEs8QaAdNRgFoCEdAli4/+GXXy3V9lChoBkdAcLt4s3AEdWgHTVMBaAhHQJYuZnuiN851fZQoaAZHQG9exd6cAipoB009AWgIR0CWLrpQ1rIpdX2UKGgGR0BytgHY6GQCaAdNWwFoCEdAli7ooAn2I3V9lChoBkdAb29VTaTOgWgHTWsBaAhHQJYvMH1OCXh1fZQoaAZHQGwR4QarFOxoB02KAWgIR0CWMACmMwUQdX2UKGgGR0BtSLCemNzbaAdNOgFoCEdAljBhIJ7b+XV9lChoBkdAbYQiO/+Kj2gHTTwBaAhHQJYzShi9Zid1fZQoaAZHQG1LndO6/ZdoB01FAWgIR0CWNAa3Zwn6dX2UKGgGR0Bv7R0bLlmwaAdNXgFoCEdAljS783uNP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a500b056560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a500b0565f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a500b056680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a500b056710>", "_build": "<function ActorCriticPolicy._build at 0x7a500b0567a0>", "forward": "<function ActorCriticPolicy.forward at 0x7a500b056830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a500b0568c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a500b056950>", "_predict": "<function ActorCriticPolicy._predict at 0x7a500b0569e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a500b056a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a500b056b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a500b056b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a500afeb7c0>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711049578693163310, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq5Cb2MvTg/qKvIvSwIkr6uKue8xGCAPAAAAAAAAAAAmuFZO/Qz/T54kAK+RWSEvkh4mL0qY6s8AAAAAAAAAABm0oO7UhPfu5PyqjuzapQ8N8sqvcqJeT0AAIA/AACAPwjGkr7kgDU/knxwPB/wtr6+woi+evOQPQAAAAAAAAAAAOJcveMwmz9Iw5m96Rrhvs3/ALyHhYg6AAAAAAAAAAC67DC+b4u/Pg1zmj5t1oW+eflCPAPBVz0AAAAAAAAAAPqdlj4gyYQ/4kcXPiunwL41w8w+omQ0vQAAAAAAAAAAZiKnO8NverzJKJA8brGQPBbb1D1asWm9AACAPwAAgD8Ahiw9k01+P8dCmrwlYbO+G0APPoI4370AAAAAAAAAAJpJSLxc33q6Sl9ctYkgKK1lJPm6LjqLNAAAgD8AAIA/2hqbPQa3nT5AJc+9rP9xvshWw72xeaM8AAAAAAAAAABAg7y96Oq3PcwmlT4t11e+7yKdPdO7prwAAAAAAAAAAGbK2Dyffoa7tpV8PQtoer63Pzu61X5QPQAAgD8AAIA/Zj51PGH1IT9iiU294gmsvrDMcbzSc9+8AAAAAAAAAABzhMo9FLqPunwwobt6uDE4Jhcuu+KdWDcAAAAAAACAP0Cn773aTEE+ywsjPnBJEb5/glc8g4vSvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2O6Uqx1PqMAWyUTSsBjAF0lEdAk3ansgMc63V9lChoBkdAbUco4uK4x2gHTRABaAhHQJN3Qf8uSOl1fZQoaAZHQHEn7tzCDVZoB00xAWgIR0CTeSCFK02MdX2UKGgGR0BwgoYwZflZaAdNLAFoCEdAk3ldOh0yQHV9lChoBkdAchewHqu8smgHTQUBaAhHQJN683eenQ91fZQoaAZHQHLaneWOZLJoB00hAWgIR0CTevwkPczqdX2UKGgGR0BxgXjp9qk/aAdL9GgIR0CTexXUYsNEdX2UKGgGR0BwQdkauOjqaAdNOQFoCEdAk3tzd56dD3V9lChoBkdAcVu9ETg2qGgHTTABaAhHQJN7zkPtlZp1fZQoaAZHQHFcP/echDBoB00hAWgIR0CTfJvv0AcUdX2UKGgGR0Bza7d0q6OHaAdNNgFoCEdAk4AyD7Ikq3V9lChoBkdATZ0dRzijtWgHS/VoCEdAk4AygPEsKHV9lChoBkdAcLRaY/mknGgHTR0BaAhHQJOBGVE/jbV1fZQoaAZHQG6P8BU70WdoB005AWgIR0CTggronrprdX2UKGgGR0BxabqeK8+SaAdN1gJoCEdAk4ImgFotc3V9lChoBkdAcevsolUp/mgHS/hoCEdAk4TruhK15XV9lChoBkdAcO6G1x82JmgHTSkBaAhHQJOFKqebutx1fZQoaAZHQG+puWKMvRJoB003AWgIR0CThYrxiG34dX2UKGgGR0BHuqMWGh24aAdL32gIR0CThfpTdcjadX2UKGgGR0Bx6dmmLtNSaAdNFAFoCEdAk4YhYigTRXV9lChoBkdAcoi2oNutOmgHTRIBaAhHQJOGppUPxx11fZQoaAZHQHIN11W8yvdoB00tAWgIR0CTiFHB1s+FdX2UKGgGR0BwBoG4ZuQ7aAdNSAFoCEdAk4hrBTGYKXV9lChoBkdAXdqU6gdwN2gHTegDaAhHQJOJ/Cj1wo91fZQoaAZHQF78gdwNsnBoB03oA2gIR0CTjPQcghbGdX2UKGgGR0BxWPF3pwCKaAdL+2gIR0CTjeB7u2JBdX2UKGgGR0Bvj6hN/OMVaAdNMQFoCEdAk44jLr5ZbXV9lChoBkdAcnkL7Gecx2gHTUQBaAhHQJOO3dDYywh1fZQoaAZHQHIGCYkVvddoB00bAWgIR0CTjvzWPLgXdX2UKGgGR0BxG0cBEKE4aAdNPgFoCEdAk49gxzq8lHV9lChoBkdAbMPxFRYRumgHTQ0BaAhHQJOQzjPv8ZV1fZQoaAZHQHJmEnw5NoJoB00cAWgIR0CTkbnEVFhHdX2UKGgGR0BysqevpyIYaAdNKQFoCEdAk5JJZntfHHV9lChoBkdAb8NOAy2x6mgHTUEBaAhHQJOSSii7Ci11fZQoaAZHQHEGLsSkCV9oB01KAWgIR0CTksAbADaHdX2UKGgGR0BxpiKvV3EAaAdNTQFoCEdAk5PrUoa1kXV9lChoBkdAcTWxPO6d2GgHTSgBaAhHQJOT8x33Ycx1fZQoaAZHQHCFQwK0D2doB00sAWgIR0CTlBxQBPsSdX2UKGgGR0ByaRcTrVvuaAdNVwFoCEdAk5bXHzYmLXV9lChoBkdAbqgIUrTYumgHTQEBaAhHQJOX6vECNjt1fZQoaAZHQG6QF5OafBhoB00cAWgIR0CTmAvZRKpUdX2UKGgGR0BuXSJAMUh3aAdNHwFoCEdAk5jbUCq6v3V9lChoBkdAb7qkvboKUmgHTVMBaAhHQJOZBcTrVvx1fZQoaAZHQHKfz1TR6WxoB00gAWgIR0CTmX0rK/21dX2UKGgGR0BwEA4HX2/SaAdNWwFoCEdAk63r9VFQVXV9lChoBkdAcUQKmbb1y2gHTQoBaAhHQJOvWeZof0V1fZQoaAZHQE+gNG3F1jloB0vaaAhHQJOvYoScslN1fZQoaAZHQHG85I6Kcd5oB00+AWgIR0CTr8lgMMJAdX2UKGgGR0BSfjSgGr0baAdN6ANoCEdAk7ATWkJrtXV9lChoBkdAcqzsCkoF3mgHTS4BaAhHQJOwE0VJtix1fZQoaAZHQHGJtz8xbjdoB00hAWgIR0CTsC0f5k9VdX2UKGgGR0Bwtv3JxNqQaAdNBQFoCEdAk7DQUUO/cnV9lChoBkdAcqaAE+xGD2gHTTMBaAhHQJOxEagmJFd1fZQoaAZHQHGIOUpuuRtoB00TAWgIR0CTsVe9zwMIdX2UKGgGR0BO4WKMvRJFaAdLvWgIR0CTspsQumJndX2UKGgGR0BwTHY/Vy3kaAdL+mgIR0CTs8NIK+i8dX2UKGgGR0BxqE5/9YOlaAdNOgFoCEdAk7anPZ7HAHV9lChoBkdAcFCB5ooNNWgHTVkBaAhHQJO2s2Hck+p1fZQoaAZHQHEFPoaDPGBoB00iAWgIR0CTt4Aj6eoUdX2UKGgGR0BweMbyYoiLaAdNBQFoCEdAk7jzYdyT6nV9lChoBkdAcxTVDKHO8mgHTTEBaAhHQJO5BZEDyOJ1fZQoaAZHQG5Kn9ehPCVoB01XAWgIR0CTuVrSmZVodX2UKGgGR0Bx2x5eJHiFaAdL+mgIR0CTuVynk1dgdX2UKGgGR0BuurVOKwY+aAdL/WgIR0CTuZwgkka/dX2UKGgGR0A9zJ53Tuv2aAdL2GgIR0CTucXsgMc7dX2UKGgGR0BzfGN1hb4baAdNKwFoCEdAk7tg00m+kHV9lChoBkdAcftTIvJzUGgHTUcBaAhHQJO70Dlo11p1fZQoaAZHQHKlCkCV8kVoB00SAWgIR0CTu9w/gR9PdX2UKGgGR0ByuNIczZYgaAdNPwFoCEdAk7vzNdJJ5HV9lChoBkdAchzYywfQr2gHTS0BaAhHQJO8lf4REnd1fZQoaAZHQHFtcGPgeiloB00WAWgIR0CTvlEB8x9HdX2UKGgGR0Bxy+8Zk079aAdNNAFoCEdAk8BaBd2Pk3V9lChoBkdAcY1sRQJokGgHS/xoCEdAk8Es94eLenV9lChoBkdAcM6YcebNKWgHTUkBaAhHQJPDdlWfbsZ1fZQoaAZHQHC66mwaBI5oB01NAWgIR0CTw561LJ0XdX2UKGgGR0BwUyS/0ulHaAdNEwFoCEdAk8OrI5o4/HV9lChoBkdAb86r6LwWnGgHTSUBaAhHQJPECd+Xqqx1fZQoaAZHQHAlu5OJtSBoB00eAWgIR0CTxBwzLwF1dX2UKGgGR0BwSEbVBlcyaAdNOQFoCEdAk8VYh6jWTXV9lChoBkdAbdphG6PKdWgHTQ4BaAhHQJPFWQcPvrp1fZQoaAZHQHCpXBguyu9oB00GAWgIR0CTxXVR1oxpdX2UKGgGR0BxeaFnIyTIaAdNHAFoCEdAk8YL6guh9XV9lChoBkdAbbMEAYHgP2gHTR4BaAhHQJPGLikwevJ1fZQoaAZHQHCxWa6STyJoB01WAWgIR0CTxmJNCZ4OdX2UKGgGR0BtWgCEHt4SaAdNDAFoCEdAk8d1dkauOnV9lChoBkdAcUE/tIClrWgHTbMBaAhHQJPIsTviLl51fZQoaAZHQG9bE8q4H5doB01tAWgIR0CTyRGlhw2mdX2UKGgGR0BvqcHKOktVaAdL92gIR0CTyaP7el9CdX2UKGgGR0Bsm6bYsd1daAdNKAFoCEdAk8psEvCdjHV9lChoBkdAcRqcrAgxJ2gHTQYBaAhHQJPL/nnuAqd1fZQoaAZHQHCaBegL7XRoB00FAWgIR0CTzBYvnKW+dX2UKGgGR0BJP3irDIikaAdL/GgIR0CTzDCNCJGfdX2UKGgGR0BxnffO2RaHaAdNGgFoCEdAk8y+67NB4XV9lChoBkdAchjmzjWCmWgHTTYBaAhHQJPN+aUiY9h1fZQoaAZHQG29fX5FgD1oB00gAWgIR0CTzoPl+3H8dX2UKGgGR0BvbGSwGGEgaAdNDgFoCEdAk86jfrKNhnV9lChoBkdAcrmleF+NLmgHTTIBaAhHQJPO9x7zCk51fZQoaAZHQHJ4n2ZiNKhoB01CAWgIR0CTz3ErXlKcdX2UKGgGR0BxFguQIUrTaAdNLgFoCEdAk8+NLDhtL3V9lChoBkdAcQSyPuG9H2gHTQEBaAhHQJPPliqhlDp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:560dc67bf597d23b169b0f73dbb1bdb3bd2847fd008e8874b9adcfd95e597ada
|
3 |
+
size 148068
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
-
"verbose":
|
23 |
"policy_kwargs": {},
|
24 |
"num_timesteps": 1015808,
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a500b056560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a500b0565f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a500b056680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a500b056710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a500b0567a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a500b056830>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a500b0568c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a500b056950>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a500b0569e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a500b056a70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a500b056b00>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a500b056b90>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a500afeb7c0>"
|
21 |
},
|
22 |
+
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
24 |
"num_timesteps": 1015808,
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1711049578693163310,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq5Cb2MvTg/qKvIvSwIkr6uKue8xGCAPAAAAAAAAAAAmuFZO/Qz/T54kAK+RWSEvkh4mL0qY6s8AAAAAAAAAABm0oO7UhPfu5PyqjuzapQ8N8sqvcqJeT0AAIA/AACAPwjGkr7kgDU/knxwPB/wtr6+woi+evOQPQAAAAAAAAAAAOJcveMwmz9Iw5m96Rrhvs3/ALyHhYg6AAAAAAAAAAC67DC+b4u/Pg1zmj5t1oW+eflCPAPBVz0AAAAAAAAAAPqdlj4gyYQ/4kcXPiunwL41w8w+omQ0vQAAAAAAAAAAZiKnO8NverzJKJA8brGQPBbb1D1asWm9AACAPwAAgD8Ahiw9k01+P8dCmrwlYbO+G0APPoI4370AAAAAAAAAAJpJSLxc33q6Sl9ctYkgKK1lJPm6LjqLNAAAgD8AAIA/2hqbPQa3nT5AJc+9rP9xvshWw72xeaM8AAAAAAAAAABAg7y96Oq3PcwmlT4t11e+7yKdPdO7prwAAAAAAAAAAGbK2Dyffoa7tpV8PQtoer63Pzu61X5QPQAAgD8AAIA/Zj51PGH1IT9iiU294gmsvrDMcbzSc9+8AAAAAAAAAABzhMo9FLqPunwwobt6uDE4Jhcuu+KdWDcAAAAAAACAP0Cn773aTEE+ywsjPnBJEb5/glc8g4vSvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2O6Uqx1PqMAWyUTSsBjAF0lEdAk3ansgMc63V9lChoBkdAbUco4uK4x2gHTRABaAhHQJN3Qf8uSOl1fZQoaAZHQHEn7tzCDVZoB00xAWgIR0CTeSCFK02MdX2UKGgGR0BwgoYwZflZaAdNLAFoCEdAk3ldOh0yQHV9lChoBkdAchewHqu8smgHTQUBaAhHQJN683eenQ91fZQoaAZHQHLaneWOZLJoB00hAWgIR0CTevwkPczqdX2UKGgGR0BxgXjp9qk/aAdL9GgIR0CTexXUYsNEdX2UKGgGR0BwQdkauOjqaAdNOQFoCEdAk3tzd56dD3V9lChoBkdAcVu9ETg2qGgHTTABaAhHQJN7zkPtlZp1fZQoaAZHQHFcP/echDBoB00hAWgIR0CTfJvv0AcUdX2UKGgGR0Bza7d0q6OHaAdNNgFoCEdAk4AyD7Ikq3V9lChoBkdATZ0dRzijtWgHS/VoCEdAk4AygPEsKHV9lChoBkdAcLRaY/mknGgHTR0BaAhHQJOBGVE/jbV1fZQoaAZHQG6P8BU70WdoB005AWgIR0CTggronrprdX2UKGgGR0BxabqeK8+SaAdN1gJoCEdAk4ImgFotc3V9lChoBkdAcevsolUp/mgHS/hoCEdAk4TruhK15XV9lChoBkdAcO6G1x82JmgHTSkBaAhHQJOFKqebutx1fZQoaAZHQG+puWKMvRJoB003AWgIR0CThYrxiG34dX2UKGgGR0BHuqMWGh24aAdL32gIR0CThfpTdcjadX2UKGgGR0Bx6dmmLtNSaAdNFAFoCEdAk4YhYigTRXV9lChoBkdAcoi2oNutOmgHTRIBaAhHQJOGppUPxx11fZQoaAZHQHIN11W8yvdoB00tAWgIR0CTiFHB1s+FdX2UKGgGR0BwBoG4ZuQ7aAdNSAFoCEdAk4hrBTGYKXV9lChoBkdAXdqU6gdwN2gHTegDaAhHQJOJ/Cj1wo91fZQoaAZHQF78gdwNsnBoB03oA2gIR0CTjPQcghbGdX2UKGgGR0BxWPF3pwCKaAdL+2gIR0CTjeB7u2JBdX2UKGgGR0Bvj6hN/OMVaAdNMQFoCEdAk44jLr5ZbXV9lChoBkdAcnkL7Gecx2gHTUQBaAhHQJOO3dDYywh1fZQoaAZHQHIGCYkVvddoB00bAWgIR0CTjvzWPLgXdX2UKGgGR0BxG0cBEKE4aAdNPgFoCEdAk49gxzq8lHV9lChoBkdAbMPxFRYRumgHTQ0BaAhHQJOQzjPv8ZV1fZQoaAZHQHJmEnw5NoJoB00cAWgIR0CTkbnEVFhHdX2UKGgGR0BysqevpyIYaAdNKQFoCEdAk5JJZntfHHV9lChoBkdAb8NOAy2x6mgHTUEBaAhHQJOSSii7Ci11fZQoaAZHQHEGLsSkCV9oB01KAWgIR0CTksAbADaHdX2UKGgGR0BxpiKvV3EAaAdNTQFoCEdAk5PrUoa1kXV9lChoBkdAcTWxPO6d2GgHTSgBaAhHQJOT8x33Ycx1fZQoaAZHQHCFQwK0D2doB00sAWgIR0CTlBxQBPsSdX2UKGgGR0ByaRcTrVvuaAdNVwFoCEdAk5bXHzYmLXV9lChoBkdAbqgIUrTYumgHTQEBaAhHQJOX6vECNjt1fZQoaAZHQG6QF5OafBhoB00cAWgIR0CTmAvZRKpUdX2UKGgGR0BuXSJAMUh3aAdNHwFoCEdAk5jbUCq6v3V9lChoBkdAb7qkvboKUmgHTVMBaAhHQJOZBcTrVvx1fZQoaAZHQHKfz1TR6WxoB00gAWgIR0CTmX0rK/21dX2UKGgGR0BwEA4HX2/SaAdNWwFoCEdAk63r9VFQVXV9lChoBkdAcUQKmbb1y2gHTQoBaAhHQJOvWeZof0V1fZQoaAZHQE+gNG3F1jloB0vaaAhHQJOvYoScslN1fZQoaAZHQHG85I6Kcd5oB00+AWgIR0CTr8lgMMJAdX2UKGgGR0BSfjSgGr0baAdN6ANoCEdAk7ATWkJrtXV9lChoBkdAcqzsCkoF3mgHTS4BaAhHQJOwE0VJtix1fZQoaAZHQHGJtz8xbjdoB00hAWgIR0CTsC0f5k9VdX2UKGgGR0Bwtv3JxNqQaAdNBQFoCEdAk7DQUUO/cnV9lChoBkdAcqaAE+xGD2gHTTMBaAhHQJOxEagmJFd1fZQoaAZHQHGIOUpuuRtoB00TAWgIR0CTsVe9zwMIdX2UKGgGR0BO4WKMvRJFaAdLvWgIR0CTspsQumJndX2UKGgGR0BwTHY/Vy3kaAdL+mgIR0CTs8NIK+i8dX2UKGgGR0BxqE5/9YOlaAdNOgFoCEdAk7anPZ7HAHV9lChoBkdAcFCB5ooNNWgHTVkBaAhHQJO2s2Hck+p1fZQoaAZHQHEFPoaDPGBoB00iAWgIR0CTt4Aj6eoUdX2UKGgGR0BweMbyYoiLaAdNBQFoCEdAk7jzYdyT6nV9lChoBkdAcxTVDKHO8mgHTTEBaAhHQJO5BZEDyOJ1fZQoaAZHQG5Kn9ehPCVoB01XAWgIR0CTuVrSmZVodX2UKGgGR0Bx2x5eJHiFaAdL+mgIR0CTuVynk1dgdX2UKGgGR0BuurVOKwY+aAdL/WgIR0CTuZwgkka/dX2UKGgGR0A9zJ53Tuv2aAdL2GgIR0CTucXsgMc7dX2UKGgGR0BzfGN1hb4baAdNKwFoCEdAk7tg00m+kHV9lChoBkdAcftTIvJzUGgHTUcBaAhHQJO70Dlo11p1fZQoaAZHQHKlCkCV8kVoB00SAWgIR0CTu9w/gR9PdX2UKGgGR0ByuNIczZYgaAdNPwFoCEdAk7vzNdJJ5HV9lChoBkdAchzYywfQr2gHTS0BaAhHQJO8lf4REnd1fZQoaAZHQHFtcGPgeiloB00WAWgIR0CTvlEB8x9HdX2UKGgGR0Bxy+8Zk079aAdNNAFoCEdAk8BaBd2Pk3V9lChoBkdAcY1sRQJokGgHS/xoCEdAk8Es94eLenV9lChoBkdAcM6YcebNKWgHTUkBaAhHQJPDdlWfbsZ1fZQoaAZHQHC66mwaBI5oB01NAWgIR0CTw561LJ0XdX2UKGgGR0BwUyS/0ulHaAdNEwFoCEdAk8OrI5o4/HV9lChoBkdAb86r6LwWnGgHTSUBaAhHQJPECd+Xqqx1fZQoaAZHQHAlu5OJtSBoB00eAWgIR0CTxBwzLwF1dX2UKGgGR0BwSEbVBlcyaAdNOQFoCEdAk8VYh6jWTXV9lChoBkdAbdphG6PKdWgHTQ4BaAhHQJPFWQcPvrp1fZQoaAZHQHCpXBguyu9oB00GAWgIR0CTxXVR1oxpdX2UKGgGR0BxeaFnIyTIaAdNHAFoCEdAk8YL6guh9XV9lChoBkdAbbMEAYHgP2gHTR4BaAhHQJPGLikwevJ1fZQoaAZHQHCxWa6STyJoB01WAWgIR0CTxmJNCZ4OdX2UKGgGR0BtWgCEHt4SaAdNDAFoCEdAk8d1dkauOnV9lChoBkdAcUE/tIClrWgHTbMBaAhHQJPIsTviLl51fZQoaAZHQG9bE8q4H5doB01tAWgIR0CTyRGlhw2mdX2UKGgGR0BvqcHKOktVaAdL92gIR0CTyaP7el9CdX2UKGgGR0Bsm6bYsd1daAdNKAFoCEdAk8psEvCdjHV9lChoBkdAcRqcrAgxJ2gHTQYBaAhHQJPL/nnuAqd1fZQoaAZHQHCaBegL7XRoB00FAWgIR0CTzBYvnKW+dX2UKGgGR0BJP3irDIikaAdL/GgIR0CTzDCNCJGfdX2UKGgGR0BxnffO2RaHaAdNGgFoCEdAk8y+67NB4XV9lChoBkdAchjmzjWCmWgHTTYBaAhHQJPN+aUiY9h1fZQoaAZHQG29fX5FgD1oB00gAWgIR0CTzoPl+3H8dX2UKGgGR0BvbGSwGGEgaAdNDgFoCEdAk86jfrKNhnV9lChoBkdAcrmleF+NLmgHTTIBaAhHQJPO9x7zCk51fZQoaAZHQHJ4n2ZiNKhoB01CAWgIR0CTz3ErXlKcdX2UKGgGR0BxFguQIUrTaAdNLgFoCEdAk8+NLDhtL3V9lChoBkdAcQSyPuG9H2gHTQEBaAhHQJPPliqhlDp1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eec7d6d0df671820c66e64fe8eba3d1ef67a9df215b7d6f1758f0ccbceb44149
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a7397cbebdd4070465419767d75fec6f4e6ca5e85677f85a34a16785a23756b
|
3 |
+
size 43762
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.2.1+cu121
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 260.6584475684789, "std_reward": 15.117215948578346, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-21T19:58:52.717335"}
|