Text-to-Image
Diffusers
StableDiffusionPipeline
stable-diffusion
stable-diffusion-diffusers
Inference Endpoints
sdfhg5243 commited on
Commit
979c582
1 Parent(s): 55bb199

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +144 -0
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ tags:
4
+ - stable-diffusion
5
+ - stable-diffusion-diffusers
6
+ - text-to-image
7
+ datasets:
8
+ - ChristophSchuhmann/improved_aesthetics_6.25plus
9
+ library_name: diffusers
10
+ pipeline_tag: text-to-image
11
+ extra_gated_prompt: >-
12
+ This model is open access and available to all, with a CreativeML OpenRAIL-M
13
+ license further specifying rights and usage.
14
+
15
+ The CreativeML OpenRAIL License specifies:
16
+
17
+
18
+ 1. You can't use the model to deliberately produce nor share illegal or
19
+ harmful outputs or content
20
+
21
+ 2. The authors claim no rights on the outputs you generate, you are free to
22
+ use them and are accountable for their use which must not go against the
23
+ provisions set in the license
24
+
25
+ 3. You may re-distribute the weights and use the model commercially and/or as
26
+ a service. If you do, please be aware you have to include the same use
27
+ restrictions as the ones in the license and share a copy of the CreativeML
28
+ OpenRAIL-M to all your users (please read the license entirely and carefully)
29
+
30
+ Please read the full license carefully here:
31
+ https://huggingface.co/spaces/CompVis/stable-diffusion-license
32
+
33
+ extra_gated_heading: Please read the LICENSE to access this model
34
+
35
+ ---
36
+
37
+
38
+ # BK-SDM-2M Model Card
39
+
40
+ BK-SDM-{[**Base-2M**](https://huggingface.co/nota-ai/bk-sdm-base-2m), [**Small-2M**](https://huggingface.co/nota-ai/bk-sdm-small-2m), [**Tiny-2M**](https://huggingface.co/nota-ai/bk-sdm-tiny-2m)} are pretrained with **10× more data** (2.3M LAION image-text pairs) compared to our previous release.
41
+ - Block-removed Knowledge-distilled Stable Diffusion Model (BK-SDM) is an architecturally compressed SDM for efficient text-to-image synthesis.
42
+ - The previous BK-SDM-{[Base](https://huggingface.co/nota-ai/bk-sdm-base), [Small](https://huggingface.co/nota-ai/bk-sdm-small), [Tiny](https://huggingface.co/nota-ai/bk-sdm-tiny)} were obtained via distillation pretraining on 0.22M LAION pairs.
43
+ - Resources for more information: [Paper](https://arxiv.org/abs/2305.15798), [GitHub](https://github.com/Nota-NetsPresso/BK-SDM), [Demo]( https://huggingface.co/spaces/nota-ai/compressed-stable-diffusion).
44
+
45
+
46
+ ## Examples with 🤗[Diffusers library](https://github.com/huggingface/diffusers).
47
+
48
+ An inference code with the default PNDM scheduler and 50 denoising steps is as follows.
49
+
50
+ ```python
51
+ import torch
52
+ from diffusers import StableDiffusionPipeline
53
+
54
+ pipe = StableDiffusionPipeline.from_pretrained("nota-ai/bk-sdm-tiny-2m", torch_dtype=torch.float16)
55
+ pipe = pipe.to("cuda")
56
+
57
+ prompt = "a black vase holding a bouquet of roses"
58
+ image = pipe(prompt).images[0]
59
+
60
+ image.save("example.png")
61
+ ```
62
+
63
+
64
+ ## Compression Method
65
+
66
+ Adhering to the [U-Net architecture](https://huggingface.co/nota-ai/bk-sdm-tiny#u-net-architecture) and [distillation pretraining](https://huggingface.co/nota-ai/bk-sdm-tiny#distillation-pretraining) of BK-SDM, the difference in BK-SDM-2M is a 10× increase in the number of training pairs.
67
+
68
+ - **Training Data**: 2,256,472 image-text pairs (i.e., 2.3M pairs) from [LAION-Aesthetics V2 6.25+](https://laion.ai/blog/laion-aesthetics/).
69
+ - **Hardware:** A single NVIDIA A100 80GB GPU
70
+ - **Gradient Accumulations**: 4
71
+ - **Batch:** 256 (=4×64)
72
+ - **Optimizer:** AdamW
73
+ - **Learning Rate:** a constant learning rate of 5e-5 for 50K-iteration pretraining
74
+
75
+
76
+ ## Experimental Results
77
+
78
+ The following table shows the zero-shot results on 30K samples from the MS-COCO validation split. After generating 512×512 images with the PNDM scheduler and 25 denoising steps, we downsampled them to 256×256 for evaluating generation scores.
79
+
80
+ - Our models were drawn at the 50K-th training iteration.
81
+
82
+ | Model | FID↓ | IS↑ | CLIP Score↑<br>(ViT-g/14) | # Params,<br>U-Net | # Params,<br>Whole SDM |
83
+ |:---:|:---:|:---:|:---:|:---:|:---:|
84
+ | [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4) | 13.05 | 36.76 | 0.2958 | 0.86B | 1.04B |
85
+ | [BK-SDM-Base](https://huggingface.co/nota-ai/bk-sdm-base) (Ours) | 15.76 | 33.79 | 0.2878 | 0.58B | 0.76B |
86
+ | [BK-SDM-Base-2M](https://huggingface.co/nota-ai/bk-sdm-base-2m) (Ours) | 14.81 | 34.17 | 0.2883 | 0.58B | 0.76B |
87
+ | [BK-SDM-Small](https://huggingface.co/nota-ai/bk-sdm-small) (Ours) | 16.98 | 31.68 | 0.2677 | 0.49B | 0.66B |
88
+ | [BK-SDM-Small-2M](https://huggingface.co/nota-ai/bk-sdm-small-2m) (Ours) | 17.05 | 33.10 | 0.2734 | 0.49B | 0.66B |
89
+ | [BK-SDM-Tiny](https://huggingface.co/nota-ai/bk-sdm-tiny) (Ours) | 17.12 | 30.09 | 0.2653 | 0.33B | 0.50B |
90
+ | [BK-SDM-Tiny-2M](https://huggingface.co/nota-ai/bk-sdm-tiny-2m) (Ours) | 17.53 | 31.32 | 0.2690 | 0.33B | 0.50B |
91
+
92
+
93
+
94
+ ### Effect of Different Data Sizes for Training BK-SDM-Small
95
+ Increasing the number of training pairs improves the IS and CLIP scores over training progress. The MS-COCO 256×256 30K benchmark was used for evaluation.
96
+
97
+ <center>
98
+ <img alt="Training progress with different data sizes" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/assets-bk-sdm/fig_iter_data_size.png" width="100%">
99
+ </center>
100
+
101
+ Furthermore, with the growth in data volume, visual results become more favorable (e.g., better image-text alignment and clear distinction among objects).
102
+
103
+ <center>
104
+ <img alt="Visual results with different data sizes" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/assets-bk-sdm/fig_results_data_size.png" width="100%">
105
+ </center>
106
+
107
+ ### Additional Visual Examples
108
+
109
+ <center>
110
+ <img alt="additional visual examples" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/assets-bk-sdm/fig_results_models_2m.png" width="100%">
111
+ </center>
112
+
113
+
114
+ # Uses
115
+ Follow [the usage guidelines of Stable Diffusion v1](https://huggingface.co/CompVis/stable-diffusion-v1-4#uses).
116
+
117
+
118
+ # Acknowledgments
119
+ - We express our gratitude to [Microsoft for Startups Founders Hub](https://www.microsoft.com/en-us/startups) for generously providing the Azure credits used during pretraining.
120
+ - We deeply appreciate the pioneering research on Latent/Stable Diffusion conducted by [CompVis](https://github.com/CompVis/latent-diffusion), [Runway](https://runwayml.com/), and [Stability AI](https://stability.ai/).
121
+ - Special thanks to the contributors to [LAION](https://laion.ai/), [Diffusers](https://github.com/huggingface/diffusers), and [Gradio](https://www.gradio.app/) for their valuable support.
122
+
123
+
124
+ # Citation
125
+ ```bibtex
126
+ @article{kim2023architectural,
127
+ title={On Architectural Compression of Text-to-Image Diffusion Models},
128
+ author={Kim, Bo-Kyeong and Song, Hyoung-Kyu and Castells, Thibault and Choi, Shinkook},
129
+ journal={arXiv preprint arXiv:2305.15798},
130
+ year={2023},
131
+ url={https://arxiv.org/abs/2305.15798}
132
+ }
133
+ ```
134
+ ```bibtex
135
+ @article{Kim_2023_ICMLW,
136
+ title={BK-SDM: Architecturally Compressed Stable Diffusion for Efficient Text-to-Image Generation},
137
+ author={Kim, Bo-Kyeong and Song, Hyoung-Kyu and Castells, Thibault and Choi, Shinkook},
138
+ journal={ICML Workshop on Efficient Systems for Foundation Models (ES-FoMo)},
139
+ year={2023},
140
+ url={https://openreview.net/forum?id=bOVydU0XKC}
141
+ }
142
+ ```
143
+
144
+ *This model card was written by Bo-Kyeong Kim and is based on the [Stable Diffusion v1 model card]( https://huggingface.co/CompVis/stable-diffusion-v1-4).*