sdadas commited on
Commit
771f415
1 Parent(s): 733f14b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1152 -0
README.md CHANGED
@@ -5,6 +5,1158 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  language: pl
9
  license: apache-2.0
10
  widget:
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ - mteb
9
+ model-index:
10
+ - name: mmlw-e5-base
11
+ results:
12
+ - task:
13
+ type: Clustering
14
+ dataset:
15
+ type: PL-MTEB/8tags-clustering
16
+ name: MTEB 8TagsClustering
17
+ config: default
18
+ split: test
19
+ revision: None
20
+ metrics:
21
+ - type: v_measure
22
+ value: 30.249113010261492
23
+ - task:
24
+ type: Classification
25
+ dataset:
26
+ type: PL-MTEB/allegro-reviews
27
+ name: MTEB AllegroReviews
28
+ config: default
29
+ split: test
30
+ revision: None
31
+ metrics:
32
+ - type: accuracy
33
+ value: 36.3817097415507
34
+ - type: f1
35
+ value: 32.77742158736663
36
+ - task:
37
+ type: Retrieval
38
+ dataset:
39
+ type: arguana-pl
40
+ name: MTEB ArguAna-PL
41
+ config: default
42
+ split: test
43
+ revision: None
44
+ metrics:
45
+ - type: map_at_1
46
+ value: 32.646
47
+ - type: map_at_10
48
+ value: 49.488
49
+ - type: map_at_100
50
+ value: 50.190999999999995
51
+ - type: map_at_1000
52
+ value: 50.194
53
+ - type: map_at_3
54
+ value: 44.749
55
+ - type: map_at_5
56
+ value: 47.571999999999996
57
+ - type: mrr_at_1
58
+ value: 34.211000000000006
59
+ - type: mrr_at_10
60
+ value: 50.112
61
+ - type: mrr_at_100
62
+ value: 50.836000000000006
63
+ - type: mrr_at_1000
64
+ value: 50.839
65
+ - type: mrr_at_3
66
+ value: 45.614
67
+ - type: mrr_at_5
68
+ value: 48.242000000000004
69
+ - type: ndcg_at_1
70
+ value: 32.646
71
+ - type: ndcg_at_10
72
+ value: 58.396
73
+ - type: ndcg_at_100
74
+ value: 61.285000000000004
75
+ - type: ndcg_at_1000
76
+ value: 61.358999999999995
77
+ - type: ndcg_at_3
78
+ value: 48.759
79
+ - type: ndcg_at_5
80
+ value: 53.807
81
+ - type: precision_at_1
82
+ value: 32.646
83
+ - type: precision_at_10
84
+ value: 8.663
85
+ - type: precision_at_100
86
+ value: 0.9900000000000001
87
+ - type: precision_at_1000
88
+ value: 0.1
89
+ - type: precision_at_3
90
+ value: 20.128
91
+ - type: precision_at_5
92
+ value: 14.509
93
+ - type: recall_at_1
94
+ value: 32.646
95
+ - type: recall_at_10
96
+ value: 86.629
97
+ - type: recall_at_100
98
+ value: 99.004
99
+ - type: recall_at_1000
100
+ value: 99.57300000000001
101
+ - type: recall_at_3
102
+ value: 60.38400000000001
103
+ - type: recall_at_5
104
+ value: 72.54599999999999
105
+ - task:
106
+ type: Classification
107
+ dataset:
108
+ type: PL-MTEB/cbd
109
+ name: MTEB CBD
110
+ config: default
111
+ split: test
112
+ revision: None
113
+ metrics:
114
+ - type: accuracy
115
+ value: 65.53999999999999
116
+ - type: ap
117
+ value: 19.75395945379771
118
+ - type: f1
119
+ value: 55.00481388401326
120
+ - task:
121
+ type: PairClassification
122
+ dataset:
123
+ type: PL-MTEB/cdsce-pairclassification
124
+ name: MTEB CDSC-E
125
+ config: default
126
+ split: test
127
+ revision: None
128
+ metrics:
129
+ - type: cos_sim_accuracy
130
+ value: 89.5
131
+ - type: cos_sim_ap
132
+ value: 77.26879308078568
133
+ - type: cos_sim_f1
134
+ value: 65.13157894736842
135
+ - type: cos_sim_precision
136
+ value: 86.8421052631579
137
+ - type: cos_sim_recall
138
+ value: 52.10526315789473
139
+ - type: dot_accuracy
140
+ value: 88.0
141
+ - type: dot_ap
142
+ value: 69.17235659054914
143
+ - type: dot_f1
144
+ value: 65.71428571428571
145
+ - type: dot_precision
146
+ value: 71.875
147
+ - type: dot_recall
148
+ value: 60.526315789473685
149
+ - type: euclidean_accuracy
150
+ value: 89.5
151
+ - type: euclidean_ap
152
+ value: 77.1905400565015
153
+ - type: euclidean_f1
154
+ value: 64.91803278688525
155
+ - type: euclidean_precision
156
+ value: 86.08695652173914
157
+ - type: euclidean_recall
158
+ value: 52.10526315789473
159
+ - type: manhattan_accuracy
160
+ value: 89.5
161
+ - type: manhattan_ap
162
+ value: 77.19531778873724
163
+ - type: manhattan_f1
164
+ value: 64.72491909385113
165
+ - type: manhattan_precision
166
+ value: 84.03361344537815
167
+ - type: manhattan_recall
168
+ value: 52.63157894736842
169
+ - type: max_accuracy
170
+ value: 89.5
171
+ - type: max_ap
172
+ value: 77.26879308078568
173
+ - type: max_f1
174
+ value: 65.71428571428571
175
+ - task:
176
+ type: STS
177
+ dataset:
178
+ type: PL-MTEB/cdscr-sts
179
+ name: MTEB CDSC-R
180
+ config: default
181
+ split: test
182
+ revision: None
183
+ metrics:
184
+ - type: cos_sim_pearson
185
+ value: 93.18498922236566
186
+ - type: cos_sim_spearman
187
+ value: 93.26224500108704
188
+ - type: euclidean_pearson
189
+ value: 92.25462061070286
190
+ - type: euclidean_spearman
191
+ value: 93.18623989769242
192
+ - type: manhattan_pearson
193
+ value: 92.16291103586255
194
+ - type: manhattan_spearman
195
+ value: 93.14403078934417
196
+ - task:
197
+ type: Retrieval
198
+ dataset:
199
+ type: dbpedia-pl
200
+ name: MTEB DBPedia-PL
201
+ config: default
202
+ split: test
203
+ revision: None
204
+ metrics:
205
+ - type: map_at_1
206
+ value: 8.268
207
+ - type: map_at_10
208
+ value: 17.391000000000002
209
+ - type: map_at_100
210
+ value: 24.266
211
+ - type: map_at_1000
212
+ value: 25.844
213
+ - type: map_at_3
214
+ value: 12.636
215
+ - type: map_at_5
216
+ value: 14.701
217
+ - type: mrr_at_1
218
+ value: 62.74999999999999
219
+ - type: mrr_at_10
220
+ value: 70.25200000000001
221
+ - type: mrr_at_100
222
+ value: 70.601
223
+ - type: mrr_at_1000
224
+ value: 70.613
225
+ - type: mrr_at_3
226
+ value: 68.083
227
+ - type: mrr_at_5
228
+ value: 69.37100000000001
229
+ - type: ndcg_at_1
230
+ value: 51.87500000000001
231
+ - type: ndcg_at_10
232
+ value: 37.185
233
+ - type: ndcg_at_100
234
+ value: 41.949
235
+ - type: ndcg_at_1000
236
+ value: 49.523
237
+ - type: ndcg_at_3
238
+ value: 41.556
239
+ - type: ndcg_at_5
240
+ value: 39.278
241
+ - type: precision_at_1
242
+ value: 63.24999999999999
243
+ - type: precision_at_10
244
+ value: 29.225
245
+ - type: precision_at_100
246
+ value: 9.745
247
+ - type: precision_at_1000
248
+ value: 2.046
249
+ - type: precision_at_3
250
+ value: 43.833
251
+ - type: precision_at_5
252
+ value: 37.9
253
+ - type: recall_at_1
254
+ value: 8.268
255
+ - type: recall_at_10
256
+ value: 22.542
257
+ - type: recall_at_100
258
+ value: 48.154
259
+ - type: recall_at_1000
260
+ value: 72.62100000000001
261
+ - type: recall_at_3
262
+ value: 13.818
263
+ - type: recall_at_5
264
+ value: 17.137
265
+ - task:
266
+ type: Retrieval
267
+ dataset:
268
+ type: fiqa-pl
269
+ name: MTEB FiQA-PL
270
+ config: default
271
+ split: test
272
+ revision: None
273
+ metrics:
274
+ - type: map_at_1
275
+ value: 16.489
276
+ - type: map_at_10
277
+ value: 26.916
278
+ - type: map_at_100
279
+ value: 28.582
280
+ - type: map_at_1000
281
+ value: 28.774
282
+ - type: map_at_3
283
+ value: 23.048
284
+ - type: map_at_5
285
+ value: 24.977
286
+ - type: mrr_at_1
287
+ value: 33.642
288
+ - type: mrr_at_10
289
+ value: 41.987
290
+ - type: mrr_at_100
291
+ value: 42.882
292
+ - type: mrr_at_1000
293
+ value: 42.93
294
+ - type: mrr_at_3
295
+ value: 39.48
296
+ - type: mrr_at_5
297
+ value: 40.923
298
+ - type: ndcg_at_1
299
+ value: 33.488
300
+ - type: ndcg_at_10
301
+ value: 34.528
302
+ - type: ndcg_at_100
303
+ value: 41.085
304
+ - type: ndcg_at_1000
305
+ value: 44.474000000000004
306
+ - type: ndcg_at_3
307
+ value: 30.469
308
+ - type: ndcg_at_5
309
+ value: 31.618000000000002
310
+ - type: precision_at_1
311
+ value: 33.488
312
+ - type: precision_at_10
313
+ value: 9.783999999999999
314
+ - type: precision_at_100
315
+ value: 1.6389999999999998
316
+ - type: precision_at_1000
317
+ value: 0.22699999999999998
318
+ - type: precision_at_3
319
+ value: 20.525
320
+ - type: precision_at_5
321
+ value: 15.093
322
+ - type: recall_at_1
323
+ value: 16.489
324
+ - type: recall_at_10
325
+ value: 42.370000000000005
326
+ - type: recall_at_100
327
+ value: 67.183
328
+ - type: recall_at_1000
329
+ value: 87.211
330
+ - type: recall_at_3
331
+ value: 27.689999999999998
332
+ - type: recall_at_5
333
+ value: 33.408
334
+ - task:
335
+ type: Retrieval
336
+ dataset:
337
+ type: hotpotqa-pl
338
+ name: MTEB HotpotQA-PL
339
+ config: default
340
+ split: test
341
+ revision: None
342
+ metrics:
343
+ - type: map_at_1
344
+ value: 37.373
345
+ - type: map_at_10
346
+ value: 57.509
347
+ - type: map_at_100
348
+ value: 58.451
349
+ - type: map_at_1000
350
+ value: 58.524
351
+ - type: map_at_3
352
+ value: 54.064
353
+ - type: map_at_5
354
+ value: 56.257999999999996
355
+ - type: mrr_at_1
356
+ value: 74.895
357
+ - type: mrr_at_10
358
+ value: 81.233
359
+ - type: mrr_at_100
360
+ value: 81.461
361
+ - type: mrr_at_1000
362
+ value: 81.47
363
+ - type: mrr_at_3
364
+ value: 80.124
365
+ - type: mrr_at_5
366
+ value: 80.862
367
+ - type: ndcg_at_1
368
+ value: 74.747
369
+ - type: ndcg_at_10
370
+ value: 66.249
371
+ - type: ndcg_at_100
372
+ value: 69.513
373
+ - type: ndcg_at_1000
374
+ value: 70.896
375
+ - type: ndcg_at_3
376
+ value: 61.312
377
+ - type: ndcg_at_5
378
+ value: 64.132
379
+ - type: precision_at_1
380
+ value: 74.747
381
+ - type: precision_at_10
382
+ value: 13.873
383
+ - type: precision_at_100
384
+ value: 1.641
385
+ - type: precision_at_1000
386
+ value: 0.182
387
+ - type: precision_at_3
388
+ value: 38.987
389
+ - type: precision_at_5
390
+ value: 25.621
391
+ - type: recall_at_1
392
+ value: 37.373
393
+ - type: recall_at_10
394
+ value: 69.365
395
+ - type: recall_at_100
396
+ value: 82.039
397
+ - type: recall_at_1000
398
+ value: 91.148
399
+ - type: recall_at_3
400
+ value: 58.48100000000001
401
+ - type: recall_at_5
402
+ value: 64.051
403
+ - task:
404
+ type: Retrieval
405
+ dataset:
406
+ type: msmarco-pl
407
+ name: MTEB MSMARCO-PL
408
+ config: default
409
+ split: validation
410
+ revision: None
411
+ metrics:
412
+ - type: map_at_1
413
+ value: 16.753999999999998
414
+ - type: map_at_10
415
+ value: 26.764
416
+ - type: map_at_100
417
+ value: 27.929
418
+ - type: map_at_1000
419
+ value: 27.994999999999997
420
+ - type: map_at_3
421
+ value: 23.527
422
+ - type: map_at_5
423
+ value: 25.343
424
+ - type: mrr_at_1
425
+ value: 17.192
426
+ - type: mrr_at_10
427
+ value: 27.141
428
+ - type: mrr_at_100
429
+ value: 28.269
430
+ - type: mrr_at_1000
431
+ value: 28.327999999999996
432
+ - type: mrr_at_3
433
+ value: 23.906
434
+ - type: mrr_at_5
435
+ value: 25.759999999999998
436
+ - type: ndcg_at_1
437
+ value: 17.177999999999997
438
+ - type: ndcg_at_10
439
+ value: 32.539
440
+ - type: ndcg_at_100
441
+ value: 38.383
442
+ - type: ndcg_at_1000
443
+ value: 40.132
444
+ - type: ndcg_at_3
445
+ value: 25.884
446
+ - type: ndcg_at_5
447
+ value: 29.15
448
+ - type: precision_at_1
449
+ value: 17.177999999999997
450
+ - type: precision_at_10
451
+ value: 5.268
452
+ - type: precision_at_100
453
+ value: 0.823
454
+ - type: precision_at_1000
455
+ value: 0.097
456
+ - type: precision_at_3
457
+ value: 11.122
458
+ - type: precision_at_5
459
+ value: 8.338
460
+ - type: recall_at_1
461
+ value: 16.753999999999998
462
+ - type: recall_at_10
463
+ value: 50.388
464
+ - type: recall_at_100
465
+ value: 77.86999999999999
466
+ - type: recall_at_1000
467
+ value: 91.55
468
+ - type: recall_at_3
469
+ value: 32.186
470
+ - type: recall_at_5
471
+ value: 40.048
472
+ - task:
473
+ type: Classification
474
+ dataset:
475
+ type: mteb/amazon_massive_intent
476
+ name: MTEB MassiveIntentClassification (pl)
477
+ config: pl
478
+ split: test
479
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
480
+ metrics:
481
+ - type: accuracy
482
+ value: 70.9280430396772
483
+ - type: f1
484
+ value: 68.7099581466286
485
+ - task:
486
+ type: Classification
487
+ dataset:
488
+ type: mteb/amazon_massive_scenario
489
+ name: MTEB MassiveScenarioClassification (pl)
490
+ config: pl
491
+ split: test
492
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
493
+ metrics:
494
+ - type: accuracy
495
+ value: 74.76126429051783
496
+ - type: f1
497
+ value: 74.72274307018111
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: nfcorpus-pl
502
+ name: MTEB NFCorpus-PL
503
+ config: default
504
+ split: test
505
+ revision: None
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 5.348
509
+ - type: map_at_10
510
+ value: 12.277000000000001
511
+ - type: map_at_100
512
+ value: 15.804000000000002
513
+ - type: map_at_1000
514
+ value: 17.277
515
+ - type: map_at_3
516
+ value: 8.783000000000001
517
+ - type: map_at_5
518
+ value: 10.314
519
+ - type: mrr_at_1
520
+ value: 43.963
521
+ - type: mrr_at_10
522
+ value: 52.459999999999994
523
+ - type: mrr_at_100
524
+ value: 53.233
525
+ - type: mrr_at_1000
526
+ value: 53.26499999999999
527
+ - type: mrr_at_3
528
+ value: 50.464
529
+ - type: mrr_at_5
530
+ value: 51.548
531
+ - type: ndcg_at_1
532
+ value: 40.711999999999996
533
+ - type: ndcg_at_10
534
+ value: 33.709
535
+ - type: ndcg_at_100
536
+ value: 31.398
537
+ - type: ndcg_at_1000
538
+ value: 40.042
539
+ - type: ndcg_at_3
540
+ value: 37.85
541
+ - type: ndcg_at_5
542
+ value: 36.260999999999996
543
+ - type: precision_at_1
544
+ value: 43.344
545
+ - type: precision_at_10
546
+ value: 25.851000000000003
547
+ - type: precision_at_100
548
+ value: 8.279
549
+ - type: precision_at_1000
550
+ value: 2.085
551
+ - type: precision_at_3
552
+ value: 36.326
553
+ - type: precision_at_5
554
+ value: 32.074000000000005
555
+ - type: recall_at_1
556
+ value: 5.348
557
+ - type: recall_at_10
558
+ value: 16.441
559
+ - type: recall_at_100
560
+ value: 32.975
561
+ - type: recall_at_1000
562
+ value: 64.357
563
+ - type: recall_at_3
564
+ value: 9.841999999999999
565
+ - type: recall_at_5
566
+ value: 12.463000000000001
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: nq-pl
571
+ name: MTEB NQ-PL
572
+ config: default
573
+ split: test
574
+ revision: None
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 24.674
578
+ - type: map_at_10
579
+ value: 37.672
580
+ - type: map_at_100
581
+ value: 38.767
582
+ - type: map_at_1000
583
+ value: 38.82
584
+ - type: map_at_3
585
+ value: 33.823
586
+ - type: map_at_5
587
+ value: 36.063
588
+ - type: mrr_at_1
589
+ value: 27.839000000000002
590
+ - type: mrr_at_10
591
+ value: 40.129
592
+ - type: mrr_at_100
593
+ value: 41.008
594
+ - type: mrr_at_1000
595
+ value: 41.048
596
+ - type: mrr_at_3
597
+ value: 36.718
598
+ - type: mrr_at_5
599
+ value: 38.841
600
+ - type: ndcg_at_1
601
+ value: 27.839000000000002
602
+ - type: ndcg_at_10
603
+ value: 44.604
604
+ - type: ndcg_at_100
605
+ value: 49.51
606
+ - type: ndcg_at_1000
607
+ value: 50.841
608
+ - type: ndcg_at_3
609
+ value: 37.223
610
+ - type: ndcg_at_5
611
+ value: 41.073
612
+ - type: precision_at_1
613
+ value: 27.839000000000002
614
+ - type: precision_at_10
615
+ value: 7.5
616
+ - type: precision_at_100
617
+ value: 1.03
618
+ - type: precision_at_1000
619
+ value: 0.116
620
+ - type: precision_at_3
621
+ value: 17.005
622
+ - type: precision_at_5
623
+ value: 12.399000000000001
624
+ - type: recall_at_1
625
+ value: 24.674
626
+ - type: recall_at_10
627
+ value: 63.32299999999999
628
+ - type: recall_at_100
629
+ value: 85.088
630
+ - type: recall_at_1000
631
+ value: 95.143
632
+ - type: recall_at_3
633
+ value: 44.157999999999994
634
+ - type: recall_at_5
635
+ value: 53.054
636
+ - task:
637
+ type: Classification
638
+ dataset:
639
+ type: laugustyniak/abusive-clauses-pl
640
+ name: MTEB PAC
641
+ config: default
642
+ split: test
643
+ revision: None
644
+ metrics:
645
+ - type: accuracy
646
+ value: 64.5033304373009
647
+ - type: ap
648
+ value: 75.81507275237081
649
+ - type: f1
650
+ value: 62.24617820785985
651
+ - task:
652
+ type: PairClassification
653
+ dataset:
654
+ type: PL-MTEB/ppc-pairclassification
655
+ name: MTEB PPC
656
+ config: default
657
+ split: test
658
+ revision: None
659
+ metrics:
660
+ - type: cos_sim_accuracy
661
+ value: 85.39999999999999
662
+ - type: cos_sim_ap
663
+ value: 91.75881977787009
664
+ - type: cos_sim_f1
665
+ value: 87.79264214046823
666
+ - type: cos_sim_precision
667
+ value: 88.68243243243244
668
+ - type: cos_sim_recall
669
+ value: 86.9205298013245
670
+ - type: dot_accuracy
671
+ value: 71.0
672
+ - type: dot_ap
673
+ value: 82.97829049033108
674
+ - type: dot_f1
675
+ value: 78.77055039313797
676
+ - type: dot_precision
677
+ value: 69.30817610062893
678
+ - type: dot_recall
679
+ value: 91.22516556291392
680
+ - type: euclidean_accuracy
681
+ value: 85.2
682
+ - type: euclidean_ap
683
+ value: 91.85245521151309
684
+ - type: euclidean_f1
685
+ value: 87.64607679465777
686
+ - type: euclidean_precision
687
+ value: 88.38383838383838
688
+ - type: euclidean_recall
689
+ value: 86.9205298013245
690
+ - type: manhattan_accuracy
691
+ value: 85.39999999999999
692
+ - type: manhattan_ap
693
+ value: 91.85497100160649
694
+ - type: manhattan_f1
695
+ value: 87.77219430485762
696
+ - type: manhattan_precision
697
+ value: 88.8135593220339
698
+ - type: manhattan_recall
699
+ value: 86.75496688741721
700
+ - type: max_accuracy
701
+ value: 85.39999999999999
702
+ - type: max_ap
703
+ value: 91.85497100160649
704
+ - type: max_f1
705
+ value: 87.79264214046823
706
+ - task:
707
+ type: PairClassification
708
+ dataset:
709
+ type: PL-MTEB/psc-pairclassification
710
+ name: MTEB PSC
711
+ config: default
712
+ split: test
713
+ revision: None
714
+ metrics:
715
+ - type: cos_sim_accuracy
716
+ value: 97.58812615955473
717
+ - type: cos_sim_ap
718
+ value: 99.14945370088302
719
+ - type: cos_sim_f1
720
+ value: 96.06060606060606
721
+ - type: cos_sim_precision
722
+ value: 95.48192771084338
723
+ - type: cos_sim_recall
724
+ value: 96.64634146341463
725
+ - type: dot_accuracy
726
+ value: 95.17625231910947
727
+ - type: dot_ap
728
+ value: 97.05592933601112
729
+ - type: dot_f1
730
+ value: 92.14501510574019
731
+ - type: dot_precision
732
+ value: 91.31736526946108
733
+ - type: dot_recall
734
+ value: 92.98780487804879
735
+ - type: euclidean_accuracy
736
+ value: 97.6808905380334
737
+ - type: euclidean_ap
738
+ value: 99.18538119402824
739
+ - type: euclidean_f1
740
+ value: 96.20637329286798
741
+ - type: euclidean_precision
742
+ value: 95.77039274924472
743
+ - type: euclidean_recall
744
+ value: 96.64634146341463
745
+ - type: manhattan_accuracy
746
+ value: 97.58812615955473
747
+ - type: manhattan_ap
748
+ value: 99.17870990853292
749
+ - type: manhattan_f1
750
+ value: 96.02446483180427
751
+ - type: manhattan_precision
752
+ value: 96.31901840490798
753
+ - type: manhattan_recall
754
+ value: 95.73170731707317
755
+ - type: max_accuracy
756
+ value: 97.6808905380334
757
+ - type: max_ap
758
+ value: 99.18538119402824
759
+ - type: max_f1
760
+ value: 96.20637329286798
761
+ - task:
762
+ type: Classification
763
+ dataset:
764
+ type: PL-MTEB/polemo2_in
765
+ name: MTEB PolEmo2.0-IN
766
+ config: default
767
+ split: test
768
+ revision: None
769
+ metrics:
770
+ - type: accuracy
771
+ value: 68.69806094182825
772
+ - type: f1
773
+ value: 68.0619984307764
774
+ - task:
775
+ type: Classification
776
+ dataset:
777
+ type: PL-MTEB/polemo2_out
778
+ name: MTEB PolEmo2.0-OUT
779
+ config: default
780
+ split: test
781
+ revision: None
782
+ metrics:
783
+ - type: accuracy
784
+ value: 35.80971659919028
785
+ - type: f1
786
+ value: 31.13081621324864
787
+ - task:
788
+ type: Retrieval
789
+ dataset:
790
+ type: quora-pl
791
+ name: MTEB Quora-PL
792
+ config: default
793
+ split: test
794
+ revision: None
795
+ metrics:
796
+ - type: map_at_1
797
+ value: 66.149
798
+ - type: map_at_10
799
+ value: 80.133
800
+ - type: map_at_100
801
+ value: 80.845
802
+ - type: map_at_1000
803
+ value: 80.866
804
+ - type: map_at_3
805
+ value: 76.983
806
+ - type: map_at_5
807
+ value: 78.938
808
+ - type: mrr_at_1
809
+ value: 76.09
810
+ - type: mrr_at_10
811
+ value: 83.25099999999999
812
+ - type: mrr_at_100
813
+ value: 83.422
814
+ - type: mrr_at_1000
815
+ value: 83.42500000000001
816
+ - type: mrr_at_3
817
+ value: 82.02199999999999
818
+ - type: mrr_at_5
819
+ value: 82.831
820
+ - type: ndcg_at_1
821
+ value: 76.14999999999999
822
+ - type: ndcg_at_10
823
+ value: 84.438
824
+ - type: ndcg_at_100
825
+ value: 86.048
826
+ - type: ndcg_at_1000
827
+ value: 86.226
828
+ - type: ndcg_at_3
829
+ value: 80.97999999999999
830
+ - type: ndcg_at_5
831
+ value: 82.856
832
+ - type: precision_at_1
833
+ value: 76.14999999999999
834
+ - type: precision_at_10
835
+ value: 12.985
836
+ - type: precision_at_100
837
+ value: 1.513
838
+ - type: precision_at_1000
839
+ value: 0.156
840
+ - type: precision_at_3
841
+ value: 35.563
842
+ - type: precision_at_5
843
+ value: 23.586
844
+ - type: recall_at_1
845
+ value: 66.149
846
+ - type: recall_at_10
847
+ value: 93.195
848
+ - type: recall_at_100
849
+ value: 98.924
850
+ - type: recall_at_1000
851
+ value: 99.885
852
+ - type: recall_at_3
853
+ value: 83.439
854
+ - type: recall_at_5
855
+ value: 88.575
856
+ - task:
857
+ type: Retrieval
858
+ dataset:
859
+ type: scidocs-pl
860
+ name: MTEB SCIDOCS-PL
861
+ config: default
862
+ split: test
863
+ revision: None
864
+ metrics:
865
+ - type: map_at_1
866
+ value: 3.688
867
+ - type: map_at_10
868
+ value: 10.23
869
+ - type: map_at_100
870
+ value: 12.077
871
+ - type: map_at_1000
872
+ value: 12.382
873
+ - type: map_at_3
874
+ value: 7.149
875
+ - type: map_at_5
876
+ value: 8.689
877
+ - type: mrr_at_1
878
+ value: 18.2
879
+ - type: mrr_at_10
880
+ value: 28.816999999999997
881
+ - type: mrr_at_100
882
+ value: 29.982
883
+ - type: mrr_at_1000
884
+ value: 30.058
885
+ - type: mrr_at_3
886
+ value: 25.983
887
+ - type: mrr_at_5
888
+ value: 27.418
889
+ - type: ndcg_at_1
890
+ value: 18.2
891
+ - type: ndcg_at_10
892
+ value: 17.352999999999998
893
+ - type: ndcg_at_100
894
+ value: 24.859
895
+ - type: ndcg_at_1000
896
+ value: 30.535
897
+ - type: ndcg_at_3
898
+ value: 16.17
899
+ - type: ndcg_at_5
900
+ value: 14.235000000000001
901
+ - type: precision_at_1
902
+ value: 18.2
903
+ - type: precision_at_10
904
+ value: 9.19
905
+ - type: precision_at_100
906
+ value: 2.01
907
+ - type: precision_at_1000
908
+ value: 0.338
909
+ - type: precision_at_3
910
+ value: 15.5
911
+ - type: precision_at_5
912
+ value: 12.78
913
+ - type: recall_at_1
914
+ value: 3.688
915
+ - type: recall_at_10
916
+ value: 18.632
917
+ - type: recall_at_100
918
+ value: 40.822
919
+ - type: recall_at_1000
920
+ value: 68.552
921
+ - type: recall_at_3
922
+ value: 9.423
923
+ - type: recall_at_5
924
+ value: 12.943
925
+ - task:
926
+ type: PairClassification
927
+ dataset:
928
+ type: PL-MTEB/sicke-pl-pairclassification
929
+ name: MTEB SICK-E-PL
930
+ config: default
931
+ split: test
932
+ revision: None
933
+ metrics:
934
+ - type: cos_sim_accuracy
935
+ value: 83.12270688952303
936
+ - type: cos_sim_ap
937
+ value: 76.4528312253856
938
+ - type: cos_sim_f1
939
+ value: 68.69627507163324
940
+ - type: cos_sim_precision
941
+ value: 69.0922190201729
942
+ - type: cos_sim_recall
943
+ value: 68.30484330484332
944
+ - type: dot_accuracy
945
+ value: 79.20913167549939
946
+ - type: dot_ap
947
+ value: 65.03147071986633
948
+ - type: dot_f1
949
+ value: 62.812160694896846
950
+ - type: dot_precision
951
+ value: 50.74561403508772
952
+ - type: dot_recall
953
+ value: 82.4074074074074
954
+ - type: euclidean_accuracy
955
+ value: 83.16347329800244
956
+ - type: euclidean_ap
957
+ value: 76.49405838298205
958
+ - type: euclidean_f1
959
+ value: 68.66738120757414
960
+ - type: euclidean_precision
961
+ value: 68.88888888888889
962
+ - type: euclidean_recall
963
+ value: 68.44729344729345
964
+ - type: manhattan_accuracy
965
+ value: 83.16347329800244
966
+ - type: manhattan_ap
967
+ value: 76.5080551733795
968
+ - type: manhattan_f1
969
+ value: 68.73883529832084
970
+ - type: manhattan_precision
971
+ value: 68.9605734767025
972
+ - type: manhattan_recall
973
+ value: 68.51851851851852
974
+ - type: max_accuracy
975
+ value: 83.16347329800244
976
+ - type: max_ap
977
+ value: 76.5080551733795
978
+ - type: max_f1
979
+ value: 68.73883529832084
980
+ - task:
981
+ type: STS
982
+ dataset:
983
+ type: PL-MTEB/sickr-pl-sts
984
+ name: MTEB SICK-R-PL
985
+ config: default
986
+ split: test
987
+ revision: None
988
+ metrics:
989
+ - type: cos_sim_pearson
990
+ value: 82.60225159739653
991
+ - type: cos_sim_spearman
992
+ value: 76.76667220288542
993
+ - type: euclidean_pearson
994
+ value: 80.16302518898615
995
+ - type: euclidean_spearman
996
+ value: 76.76131897866455
997
+ - type: manhattan_pearson
998
+ value: 80.11881021613914
999
+ - type: manhattan_spearman
1000
+ value: 76.74246419368048
1001
+ - task:
1002
+ type: STS
1003
+ dataset:
1004
+ type: mteb/sts22-crosslingual-sts
1005
+ name: MTEB STS22 (pl)
1006
+ config: pl
1007
+ split: test
1008
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1009
+ metrics:
1010
+ - type: cos_sim_pearson
1011
+ value: 38.2744776092718
1012
+ - type: cos_sim_spearman
1013
+ value: 40.35664941442517
1014
+ - type: euclidean_pearson
1015
+ value: 29.148502128336585
1016
+ - type: euclidean_spearman
1017
+ value: 40.45531563224982
1018
+ - type: manhattan_pearson
1019
+ value: 29.124177399433098
1020
+ - type: manhattan_spearman
1021
+ value: 40.2801387844354
1022
+ - task:
1023
+ type: Retrieval
1024
+ dataset:
1025
+ type: scifact-pl
1026
+ name: MTEB SciFact-PL
1027
+ config: default
1028
+ split: test
1029
+ revision: None
1030
+ metrics:
1031
+ - type: map_at_1
1032
+ value: 52.994
1033
+ - type: map_at_10
1034
+ value: 63.612
1035
+ - type: map_at_100
1036
+ value: 64.294
1037
+ - type: map_at_1000
1038
+ value: 64.325
1039
+ - type: map_at_3
1040
+ value: 61.341
1041
+ - type: map_at_5
1042
+ value: 62.366
1043
+ - type: mrr_at_1
1044
+ value: 56.667
1045
+ - type: mrr_at_10
1046
+ value: 65.333
1047
+ - type: mrr_at_100
1048
+ value: 65.89399999999999
1049
+ - type: mrr_at_1000
1050
+ value: 65.91900000000001
1051
+ - type: mrr_at_3
1052
+ value: 63.666999999999994
1053
+ - type: mrr_at_5
1054
+ value: 64.36699999999999
1055
+ - type: ndcg_at_1
1056
+ value: 56.333
1057
+ - type: ndcg_at_10
1058
+ value: 68.292
1059
+ - type: ndcg_at_100
1060
+ value: 71.136
1061
+ - type: ndcg_at_1000
1062
+ value: 71.90100000000001
1063
+ - type: ndcg_at_3
1064
+ value: 64.387
1065
+ - type: ndcg_at_5
1066
+ value: 65.546
1067
+ - type: precision_at_1
1068
+ value: 56.333
1069
+ - type: precision_at_10
1070
+ value: 9.133
1071
+ - type: precision_at_100
1072
+ value: 1.0630000000000002
1073
+ - type: precision_at_1000
1074
+ value: 0.11299999999999999
1075
+ - type: precision_at_3
1076
+ value: 25.556
1077
+ - type: precision_at_5
1078
+ value: 16.267
1079
+ - type: recall_at_1
1080
+ value: 52.994
1081
+ - type: recall_at_10
1082
+ value: 81.178
1083
+ - type: recall_at_100
1084
+ value: 93.767
1085
+ - type: recall_at_1000
1086
+ value: 99.667
1087
+ - type: recall_at_3
1088
+ value: 69.906
1089
+ - type: recall_at_5
1090
+ value: 73.18299999999999
1091
+ - task:
1092
+ type: Retrieval
1093
+ dataset:
1094
+ type: trec-covid-pl
1095
+ name: MTEB TRECCOVID-PL
1096
+ config: default
1097
+ split: test
1098
+ revision: None
1099
+ metrics:
1100
+ - type: map_at_1
1101
+ value: 0.231
1102
+ - type: map_at_10
1103
+ value: 1.822
1104
+ - type: map_at_100
1105
+ value: 10.134
1106
+ - type: map_at_1000
1107
+ value: 24.859
1108
+ - type: map_at_3
1109
+ value: 0.615
1110
+ - type: map_at_5
1111
+ value: 0.9939999999999999
1112
+ - type: mrr_at_1
1113
+ value: 84.0
1114
+ - type: mrr_at_10
1115
+ value: 90.4
1116
+ - type: mrr_at_100
1117
+ value: 90.4
1118
+ - type: mrr_at_1000
1119
+ value: 90.4
1120
+ - type: mrr_at_3
1121
+ value: 89.0
1122
+ - type: mrr_at_5
1123
+ value: 90.4
1124
+ - type: ndcg_at_1
1125
+ value: 81.0
1126
+ - type: ndcg_at_10
1127
+ value: 73.333
1128
+ - type: ndcg_at_100
1129
+ value: 55.35099999999999
1130
+ - type: ndcg_at_1000
1131
+ value: 49.875
1132
+ - type: ndcg_at_3
1133
+ value: 76.866
1134
+ - type: ndcg_at_5
1135
+ value: 75.472
1136
+ - type: precision_at_1
1137
+ value: 86.0
1138
+ - type: precision_at_10
1139
+ value: 78.2
1140
+ - type: precision_at_100
1141
+ value: 57.18
1142
+ - type: precision_at_1000
1143
+ value: 22.332
1144
+ - type: precision_at_3
1145
+ value: 82.0
1146
+ - type: precision_at_5
1147
+ value: 81.2
1148
+ - type: recall_at_1
1149
+ value: 0.231
1150
+ - type: recall_at_10
1151
+ value: 2.056
1152
+ - type: recall_at_100
1153
+ value: 13.468
1154
+ - type: recall_at_1000
1155
+ value: 47.038999999999994
1156
+ - type: recall_at_3
1157
+ value: 0.6479999999999999
1158
+ - type: recall_at_5
1159
+ value: 1.088
1160
  language: pl
1161
  license: apache-2.0
1162
  widget: