canergen commited on
Commit
11e34b6
1 Parent(s): c2a92c0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +117 -42
README.md CHANGED
@@ -1,27 +1,88 @@
1
  ---
2
- license: cc-by-4.0
3
  library_name: scvi-tools
 
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCVI
9
- - scvi_version:1.1.0
10
- - anndata_version:0.10.3
11
  - modality:rna
12
- - tissue:Heart
13
  - annotated:True
14
  ---
15
 
16
- # Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
19
 
20
- # Model properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- Many model properties are in the model tags. Some more are listed below.
 
23
 
24
- **model_init_params**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ```json
26
  {
27
  "n_hidden": 128,
@@ -37,7 +98,12 @@ Many model properties are in the model tags. Some more are listed below.
37
  }
38
  ```
39
 
40
- **model_setup_anndata_args**:
 
 
 
 
 
41
  ```json
42
  {
43
  "layer": null,
@@ -49,50 +115,59 @@ Many model properties are in the model tags. Some more are listed below.
49
  }
50
  ```
51
 
52
- **model_summary_stats**:
53
- | Summary Stat Key | Value |
54
- |--------------------------|-------|
55
- | n_batch | 2 |
56
- | n_cells | 11505 |
57
- | n_extra_categorical_covs | 0 |
58
- | n_extra_continuous_covs | 0 |
59
- | n_labels | 6 |
60
- | n_latent_qzm | 20 |
61
- | n_latent_qzv | 20 |
62
- | n_vars | 4000 |
63
-
64
- **model_data_registry**:
65
- | Registry Key | scvi-tools Location |
66
  |-------------------|--------------------------------------|
67
- | X | adata.X |
68
- | batch | adata.obs['_scvi_batch'] |
69
- | labels | adata.obs['_scvi_labels'] |
70
- | latent_qzm | adata.obsm['_scvi_latent_qzm'] |
71
- | latent_qzv | adata.obsm['_scvi_latent_qzv'] |
72
- | minify_type | adata.uns['_scvi_adata_minify_type'] |
73
- | observed_lib_size | adata.obs['_scvi_observed_lib_size'] |
74
 
75
- **model_parent_module**: scvi.model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
- **data_is_minified**: True
78
 
79
- # Training data
80
 
81
- This is an optional link to where the training data is stored if it is too large
82
- to host on the huggingface Model hub.
83
 
84
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
85
- sure to provide this field if you want users to be able to access your training data. See the scvi-tools
86
- documentation for details. -->
 
87
 
88
- Training data url: https://zenodo.org/records/7608635/files/Heart_training_data.h5ad
 
89
 
90
- # Training code
91
 
92
- This is an optional link to the code used to train the model.
93
 
94
- Training code url: N/A
95
 
96
  # References
97
 
98
- The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
 
1
  ---
 
2
  library_name: scvi-tools
3
+ license: cc-by-4.0
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCVI
9
+ - scvi_version:1.2.0
10
+ - anndata_version:0.11.1
11
  - modality:rna
12
+ - tissue:various
13
  - annotated:True
14
  ---
15
 
16
+
17
+ ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
18
+ latent space, integrate technical batches and impute dropouts.
19
+ The learned low-dimensional latent representation of the data can be used for visualization and
20
+ clustering.
21
+
22
+ scVI takes as input a scRNA-seq gene expression matrix with cells and genes.
23
+ We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scvi.html).
24
+
25
+ - See our original manuscript for further details of the model:
26
+ [scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2).
27
+ - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how
28
+ to leverage pre-trained models.
29
+
30
+ This model can be used for fine tuning on new data using our Arches framework:
31
+ [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
32
+
33
+
34
+ # Model Description
35
 
36
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
37
 
38
+ # Metrics
39
+
40
+ We provide here key performance metrics for the uploaded model, if provided by the data uploader.
41
+
42
+ <details>
43
+ <summary><strong>Coefficient of variation</strong></summary>
44
+
45
+ The cell-wise coefficient of variation summarizes how well variation between different cells is
46
+ preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
47
+ , we would recommend not to use generated data for downstream analysis, while the generated latent
48
+ space might still be useful for analysis.
49
+
50
+ **Cell-wise Coefficient of Variation**:
51
+
52
+ Not provided by uploader
53
+
54
+ The gene-wise coefficient of variation summarizes how well variation between different genes is
55
+ preserved by the generated model expression. This value is usually quite high.
56
+
57
+ **Gene-wise Coefficient of Variation**:
58
+
59
+ Not provided by uploader
60
+
61
+ </details>
62
 
63
+ <details>
64
+ <summary><strong>Differential expression metric</strong></summary>
65
 
66
+ The differential expression metric provides a summary of the differential expression analysis
67
+ between cell types or input clusters. We provide here the F1-score, Pearson Correlation
68
+ Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
69
+ Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
70
+ cell-type.
71
+
72
+ **Differential expression**:
73
+
74
+ Not provided by uploader
75
+
76
+ </details>
77
+
78
+ # Model Properties
79
+
80
+ We provide here key parameters used to setup and train the model.
81
+
82
+ <details>
83
+ <summary><strong>Model Parameters</strong></summary>
84
+
85
+ These provide the settings to setup the original model:
86
  ```json
87
  {
88
  "n_hidden": 128,
 
98
  }
99
  ```
100
 
101
+ </details>
102
+
103
+ <details>
104
+ <summary><strong>Setup Data Arguments</strong></summary>
105
+
106
+ Arguments passed to setup_anndata of the original model:
107
  ```json
108
  {
109
  "layer": null,
 
115
  }
116
  ```
117
 
118
+ </details>
119
+
120
+ <details>
121
+ <summary><strong>Data Registry</strong></summary>
122
+
123
+ Registry elements for AnnData manager:
124
+ |  Registry Key  |  scvi-tools Location  |
 
 
 
 
 
 
 
125
  |-------------------|--------------------------------------|
126
+ |  X  |  adata.X  |
127
+ |  batch  |  adata.obs['_scvi_batch']  |
128
+ |  labels  |  adata.obs['_scvi_labels']  |
129
+ |  latent_qzm  |  adata.obsm['scvi_latent_qzm']  |
130
+ |  latent_qzv  |  adata.obsm['scvi_latent_qzv']  |
131
+ |  minify_type  | adata.uns['_scvi_adata_minify_type'] |
132
+ | observed_lib_size |  adata.obs['observed_lib_size']  |
133
 
134
+ - **Data is Minified**: False
135
+
136
+ </details>
137
+
138
+ <details>
139
+ <summary><strong>Summary Statistics</strong></summary>
140
+
141
+ |  Summary Stat Key  | Value |
142
+ |--------------------------|-------|
143
+ |  n_batch  |  2  |
144
+ |  n_cells  | 11505 |
145
+ | n_extra_categorical_covs |  0  |
146
+ | n_extra_continuous_covs  |  0  |
147
+ |  n_labels  |  6  |
148
+ |  n_latent_qzm  |  20  |
149
+ |  n_latent_qzv  |  20  |
150
+ |  n_vars  | 3000  |
151
 
152
+ </details>
153
 
 
154
 
155
+ <details>
156
+ <summary><strong>Training</strong></summary>
157
 
158
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
159
+ sure to provide this field if you want users to be able to access your training data. See the
160
+ scvi-tools documentation for details. -->
161
+ **Training data url**: Not provided by uploader
162
 
163
+ If provided by the original uploader, for those interested in understanding or replicating the
164
+ training process, the code is available at the link below.
165
 
166
+ **Training Code URL**: Not provided by uploader
167
 
168
+ </details>
169
 
 
170
 
171
  # References
172
 
173
+ The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896